You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
As heat waves get worse, these fixes will help keep your home cool and energy efficient.

July 2023 will almost certainly be declared the hottest month ever recorded, but it is unlikely to hold that record for long. Climate change is making heat waves more frequent, intense, and longer-lasting across the U.S.
Adapting to this hotter future is often discussed at the scale of a city; measured in early warning systems, green spaces, and cooling centers. But there’s also a lot that individual homeowners can do to help their communities and protect themselves.
While the vast majority of American households — some 88% — use air conditioning for relief, homeowners would be wise to consider a variety of additional, “passive” cooling techniques. These are strategies that can keep your home at a safe temperature during a heat wave if the power goes out, an increasingly likely scenario. They will also save you a bit of money on energy bills. In a sense, adapting your home to extreme heat is just another way of thinking about how to make it more energy efficient.
These retrofits also have wider benefits. Since air conditioners work by transferring heat from inside your house outdoors, these fixes can cool down your neighborhood. They’ll cut carbon emissions and air pollution by lowering demand for electricity. If widely adopted, they’ll also help prevent blackouts and could shrink the amount of renewable energy projects that need to be built to replace fossil fuels, alleviating pressure on conservation.
I spoke with Steve Easley, a building science consultant who specializes in energy efficiency, and Shawn Maurer, technical director of the Smart Energy Design Assistance Center at the University of Illinois, about how homeowners should prioritize their options when it comes to passive cooling.
“I always recommend that people do a home energy audit from a certified HERS rater,” Easley told me, referring to the Home Energy Rating System, a nationally recognized system for inspecting and calculating a home’s energy performance. The auditor will tell you how leaky your house is, and how well your roof insulation, windows, and other parts of your house are working to keep out heat, and help you figure out what to attack first. (Easley also recommends getting at least three quotes for any of these solutions, because different contractors bid this work out very differently.)
Below are five things you can do to improve your home’s resilience to heat. Depending on a number of factors — such as where you live, how your house is constructed, and the condition it's in — the mileage you can get out of each of these measures will vary. The good news is that the federal government and many state governments offer tax credits and rebates for most of these solutions. The Inflation Reduction Act created the Energy Efficient Home Improvement tax credit, which offers homeowners up to $1,200 per year to spend on energy efficiency improvements. As part of that, you can claim $150 simply for getting an energy audit.
Maurer said the very first thing he would do to improve the efficiency of a home is to seal up any cracks where air can get in — for example, along the edges of the floors, around the windows, and in the ceiling around light fixtures. “That carries in moisture, heat, and everything from outdoors into the house. It's going to offset any air conditioned air you got inside the house. So air leakage is usually the place we recommend to start,” he said. “And then from there, it's what your budget can handle as far as adding more insulation to your house.”
Insulation comes in a wide range of materials, such as fiberglass and rock wool, blown cellulose, and rigid foam boards. It can be blown into your walls, installed on the floor of the attic, or underneath your roof deck. It’s a jack-of-all-trades when it comes to energy efficiency, since it keeps heat inside in the winter and blocks it from entering in the summer. That means it’s a great option for those in colder climates that also want to prepare their homes for hotter summers.
A 2021 study by a group of researchers at Lawrence Berkeley National Lab modeled the efficacy of a wide array of passive cooling measures in low-income homes in Fresno, California. It found that roof insulation, along with solar-control window films, which we’ll get to in a moment, were the two most effective ways to keep heat from entering the buildings. However, the authors note that roof insulation is an expensive major retrofit, and recommend that it only be done when the roof needs replacement.
A good first step might be finding out what kind of insulation you already have. The most important metric when it comes to insulation is called “R-value,” and the higher the number, the more effective it is. Older homes may have attic insulation as low as R-13, whereas modern building codes typically require insulation between R-38 and R-60.
The new federal tax credit offers up to 30% of the total cost of a project for air sealing and insulation, maxing out at $1,200 total. (Labor costs are not covered by the credit.)
Get one great climate story in your inbox every day:
Having a light-colored roof and exterior will most certainly keep your home cooler than darker options, but not all light colors are created equal. “Cool” roofs and walls are made with special materials that reflect solar energy back into space, preventing it from being absorbed by the building. They also have high “thermal emittance,” meaning they release a lot of the heat that they do absorb, rather than sending it indoors.
All kinds of materials have been developed with these properties. For roofs, there are tiles, shingles, membranes, liquid coatings, and products made of slate, wood, and metal.
Cool roofs don’t necessarily have to be white, although the color does work very well. According to a database maintained by the Cool Roof Ratings Council, the most effective products tend to be bright white coatings, but there are also gray, green, blue, brown, and tan products that are rated highly.
For reflective walls, the most effective products similarly come in white and other light-colored paints, which can reflect 60 to 90 percent of sunlight when new. An extensive 2019 study of reflective wall paints by the same group at Lawrence Berkeley National Lab found that cool walls can reduce annual energy use in single-family homes in warmer U.S. climates by 2% to 8.5%.
Easley said it’s worth considering a cool roof if you have a central air conditioning system in your attic. Otherwise, attics in places like Arizona can get upwards of 130 degrees, taxing the equipment and forcing it to work harder. If your attic isn’t home to your AC, it may only make financial sense to do this kind of retrofit if your house is already in need of a new paint job or your roof needs work.
But it’s probably not worth considering a cool roof if you live in a colder climate, like the Northeast and upper Midwest, since cool roofs can actually make it colder inside in the winter.
There’s no federal incentives for cool roofs, but several states and utilities offer rebates.
This is a big category, and it’s easy to get overwhelmed by the options. Starting with those that will likely cost the most to the least, you can:
• Replace your windows altogether.
• Add storm windows to the interior or exterior of your existing glass.
• Purchase films that can be applied to the existing glass to increase its reflectivity.
• Install external shutters or awnings that block the sun.
• Install interior blinds and curtains that block the sun.
Here’s a rundown of each option.
New windows: Replacing your windows can cost tens of thousands of dollars, so unless they are already in need of repair, you may want to hold off on that option. But when the day does come around, you’ll want to look for “Low-E” windows, which stands for low emissivity. The inside of the glass is coated with microscopic layers of silver that reflect heat while still allowing light to pass through.
Within that category, you’ll also want to look for windows that have what’s called a low “solar heat gain coefficient.” This measures how much heat is absorbed by the glass and transferred inside. It’s rated on a scale of 0 to 1. If you live somewhere that’s sunny year round like Arizona, you ideally want one rated 0.25 or lower.
Through 2032, homeowners can claim up to $600 in federal tax credits for purchasing Energy Star rated windows.
Storm windows: Rather than replacing your windows entirely, it’s far cheaper to install storm windows with Low-E glass, which basically involves bolting another window to the outside of your house. Storm windows have an added benefit of improving air sealing, eliminating drafts.
Film: An even lower-cost option is to look into films with low solar heat gain coefficients that can be applied to existing windows. However, Easeley warned that many manufacturers will void your warranty if you add films to your windows.
Shutters, awnings, blinds, and curtains: Exterior shutters and overhangs that block the sun from ever reaching your windows will generally be more effective than interior shades or blinds, but all of these measures can help. “Window blinds and curtains are really dirt cheap ways to control energy,” said Maurer. “It’s not a very good buffer, but it’s something.”
The Berkeley study on passive cooling measures notes that blinds moderately improve how much heat from the sun enters your home, but they can feel more effective by reducing the sensation of sunlight streaming into your house.
If you still have any incandescent lights, they can also be a significant source of heat. They should be replaced with LED lights.
Planting trees, climbing ivy, and other vegetation can also passively cool your house by shading both your house and any surrounding pavement. However, if you have solar panels, or plan to get them in the future, do not plant trees on the south side of your home as it may reduce the solar system’s effectiveness.
Maurer cautioned that if you do a bunch of work in your home to reduce your cooling needs, you’ll want to keep that in mind if you ever have to replace your air conditioner. He advised having a contractor come in to re-measure what size system you need, since doing a like-for-like replacement will probably be overkill and could result in it malfunctioning.
Read another helpful guide about heat:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Whether any of them will hold up in court is now the big question.
Environmental lawyers are in for years of déjà vu as the Trump administration relitigates questions that many believed were settled by the Supreme Court nearly 20 years ago.
On Thursday, Trump rescinded the “endangerment finding,” the Environmental Protection Agency’s 2009 determination that greenhouse gas emissions from vehicles threaten Americans’ public health and welfare and should be regulated. In the short term, the move repeals existing vehicle emissions standards and prevents future administrations from replacing them. In the longer term, what matters is whether any of the administration’s justifications hold up in court.
In its final rule, the EPA abandoned its attempt to back the move using a bespoke climate science report published by the Department of Energy last year. The report was created by a working group assembled in secret by the department and made up of five scientists who have a track record of pushing back on mainstream climate science. Not only was the report widely refuted by scientists, but the assembly of the working group itself broke federal law, a judge ruled in late January.
“The science is clear that climate change is creating a risk for the public and public health, and so I think it’s significant that they realized that it creates a legal risk if they were to try to assert otherwise,” Carrie Jenks, the executive director of Harvard’s Environmental and Energy Law Program, told me.
Instead, the EPA came up with three arguments to justify its decision, each of which will no doubt have to be defended in court. The agency claims that each of them can stand alone, but that they also reinforce each other. Whether that proves to be true, of course, has yet to be determined.
Here’s what they are:
Congress never specifically told the EPA to regulate greenhouse gas emissions. If it did, maybe we would have accomplished more on climate change by now.
What happened instead was that in 1999, a coalition of environmental and solar energy groups asked the EPA to regulate emissions from cars, arguing that greenhouse gases should be considered pollutants under the federal Clean Air Act. In 2007, in a case called Massachusetts v. EPA, the Supreme Court agreed with the second part. That led the EPA to consider whether these gases posed enough of a danger to public health to warrant regulation. In 2009, it concluded they did — that’s what’s known as the endangerment finding. After reaching that finding, the EPA went ahead and developed standards to limit emissions from vehicles. It later followed that up with rules for power plants and oil and gas operations.
Now Trump’s EPA is arguing that this three-step progression — categorizing greenhouse gases as pollutants under the Clean Air Act, making a scientific finding that they endanger public health, and setting regulations — was all wrong. Instead, the agency now believes, it’s necessary to consider all three at once.
Using the EPA’s logic, the argument comes out something like this: If we consider that U.S. cars are a small sliver of global emissions, and that limiting those emissions will not materially change the trajectory of global warming or the impacts of climate change on Americans, then we must conclude that Congress did not intend for greenhouse gases to be regulated when it enacted the Clean Air Act.
“They are trying to merge it all together and say, because we can’t do that last thing in a way that we think is reasonable, we can’t do the first thing,” Jenks said.
The agency is not explicitly asking for Massachusetts v. EPA to be overturned, Jenks said. But if its current argument wins in court, that would be the effective outcome, preventing future administrations from issuing greenhouse gas standards unless Congress passed a law explicitly telling it to do so. While it's rare for the Supreme Court to reverse course, none of the five justices who were in the majority on that case remain, and the makeup of the court is now far more conservative than in 2007.
The EPA also asserted that the “major questions doctrine,” a legal principle that says federal agencies cannot set policies of major economic and political significance without explicit direction from Congress, means the EPA cannot “decide the Nation’s policy response to global climate change concerns.”
The Supreme Court has used the major questions doctrine to overturn EPA’s regulations in the past, most notably in West Virginia v. EPA, which ruled that President Obama’s Clean Power Plan failed this constitutional test. But that case was not about EPA’s authority to regulate greenhouse gases, the court solely struck down the particular approach the EPA took to those regulations. Nevertheless, the EPA now argues that any climate regulation at all would be a violation.
The EPA’s final argument is about the “futility” of vehicle emissions standards. It echoes a portion of the first justification, arguing that the point alone is enough of a reason to revoke the endangerment finding absent any other reason.
The endangerment finding had “severed the consideration of endangerment from the consideration of contribution” of emissions, the agency wrote. The Clean Air Act “instructs the EPA to regulate in furtherance of public health and welfare, not to reduce emissions regardless [of] whether such reductions have any material health and welfare impact.”
Funnily enough, to reach this conclusion, the agency had to use climate models developed by past administrations, including the EPA’s Optimization Model for reducing Emissions of GHGs from Automobiles, as well as some developed by outside scientists, such as the Finite amplitude Impulse Response climate emulator model — though it did so begrudgingly.
The agency “recognizes that there is still significant dispute regarding climate science and modeling,” it wrote. “However, the EPA is utilizing the climate modeling provided within this section to help illustrate” that zero-ing out emissions from vehicles “would not materially address the health and welfare dangers attributed to global climate change concerns in the Endangerment Finding.”
I have yet to hear back from outside experts about the EPA’s modeling here, so I can’t say what assumptions the agency made to reach this conclusion or estimate how well it will hold up to scrutiny. We’ll be talking to more legal scholars and scientists in the coming days as they digest the rule and dig into which of these arguments — if any — has a chance to prevail.
The state is poised to join a chorus of states with BYO energy policies.
With the backlash to data center development growing around the country, some states are launching a preemptive strike to shield residents from higher energy costs and environmental impacts.
A bill wending through the Washington State legislature would require data centers to pick up the tab for all of the costs associated with connecting them to the grid. It echoes laws passed in Oregon and Minnesota last year, and others currently under consideration in Florida, Georgia, Illinois, and Delaware.
Several of these bills, including Washington’s, also seek to protect state climate goals by ensuring that new or expanded data centers are powered by newly built, zero-emissions power plants. It’s a strategy that energy wonks have started referring to as BYONCE — bring your own new clean energy. Almost all of the bills also demand more transparency from data center companies about their energy and water use.
This list of state bills is by no means exhaustive. Governors in New York and Pennsylvania have declared their intent to enact similar policies this year. At least six states, including New York and Georgia, are also considering total moratoria on new data centers while regulators study the potential impacts of a computing boom.
“Potential” is a key word here. One of the main risks lawmakers are trying to circumvent is that utilities might pour money into new infrastructure to power data centers that are never built, built somewhere else, or don’t need as much energy as they initially thought.
“There’s a risk that there’s a lot of speculation driving the AI data center boom,” Emily Moore, the senior director of the climate and energy program at the nonprofit Sightline Institute, told me. “If the load growth projections — which really are projections at this point — don’t materialize, ratepayers could be stuck holding the bag for grid investments that utilities have made to serve data centers.”
Washington State, despite being in the top 10 states for data center concentration, has not exactly been a hotbed of opposition to the industry. According to Heatmap Pro data, there are no moratoria or restrictive ordinances on data centers in the state. Rural communities in Eastern Washington have also benefited enormously from hosting data centers from the earlier tech boom, using the tax revenue to fund schools, hospitals, municipal buildings, and recreation centers.
Still, concern has started to bubble up. A ProPublica report in 2024 suggested that data centers were slowing the state’s clean energy progress. It also described a contentious 2023 utility commission meeting in Grant County, which has the highest concentration of data centers in the state, where farmers and tech workers fought over rising energy costs.
But as with elsewhere in the country, it’s the eye-popping growth forecasts that are scaring people the most. Last year, the Northwest Power and Conservation Council, a group that oversees electricity planning in the region, estimated that data centers and chip fabricators could add somewhere between 1,400 megawatts and 4,500 megawatts of demand by 2030. That’s similar to saying that between one and four cities the size of Seattle will hook up to the region’s grid in the next four years.
In the face of such intimidating demand growth, Washington Governor Bob Ferguson convened a Data Center Working Group last year — made up of state officials as well as advisors from electric utilities, environmental groups, labor, and industry — to help the state formulate a game plan. After meeting for six months, the group published a report in December finding that among other things, the data center boom will challenge the state’s efforts to decarbonize its energy systems.
A supplemental opinion provided by the Washington Department of Ecology also noted that multiple data center developers had submitted proposals to use fossil fuels as their main source of power. While the state’s clean energy law requires all electricity to be carbon neutral by 2030, “very few data center developers are proposing to use clean energy to meet their energy needs over the next five years,” the department said.
The report’s top three recommendations — to maintain the integrity of Washington’s climate laws, strengthen ratepayer protections, and incentivize load flexibility and best practices for energy efficiency — are all incorporated into the bill now under discussion in the legislature. The full list was not approved by unanimous vote, however, and many of the dissenting voices are now opposing the data center bill in the legislature or asking for significant revisions.
Dan Diorio, the vice president of state policy for the Data Center Coalition, an industry trade group, warned lawmakers during a hearing on the bill that it would “significantly impact the competitiveness and viability of the Washington market,” putting jobs and tax revenue at risk. He argued that the bill inappropriately singles out data centers, when arguably any new facility with significant energy demand poses the same risks and infrastructure challenges. The onshoring of manufacturing facilities, hydrogen production, and the electrification of vehicles, buildings, and industry will have similar impacts. “It does not create a long-term durable policy to protect ratepayers from current and future sources of load growth,” he said.
Another point of contention is whether a top-down mandate from the state is necessary when utility regulators already have the authority to address the risks of growing energy demand through the ratemaking process.
Indeed, regulators all over the country are already working on it. The Smart Electric Power Alliance, a clean energy research and education nonprofit, has been tracking the special rate structures and rules that U.S. utilities have established for data centers, cryptocurrency mining facilities, and other customers with high-density energy needs, many of which are designed to protect other ratepayers from cost shifts. Its database, which was last updated in November, says that 36 such agreements have been approved by state utility regulators, mostly in the past three years, and that another 29 are proposed or pending.
Diario of the Data Center Coalition cited this trend as evidence that the Washington bill was unnecessary. “The data center industry has been an active party in many of those proceedings,” he told me in an email, and “remains committed to paying its full cost of service for the energy it uses.” (The Data Center Coalition opposed a recent utility decision in Ohio that will require data centers to pay for a minimum of 85% of their monthly energy forecast, even if they end up using less.)
One of the data center industry’s favorite counterarguments against the fear of rising electricity is that new large loads actually exert downward pressure on rates by spreading out fixed costs. Jeff Dennis, who is the executive director of the Electricity Customer Alliance and has worked for both the Department of Energy and the Federal Energy Regulatory Commission, told me this is something he worries about — that these potential benefits could be forfeited if data centers are isolated into their own ratemaking class. But, he said, we’re only in “version 1.5 or 2.0” when it comes to special rate structures for big energy users, known as large load tariffs.
“I think they’re going to continue to evolve as everybody learns more about how to integrate large loads, and as the large load customers themselves evolve in their operations,” he said.
The Washington bill passed the Appropriations Committee on Monday and now heads to the Rules Committee for review. A companion bill is moving through the state senate.
Plus more of the week’s top fights in renewable energy.
1. Kent County, Michigan — Yet another Michigan municipality has banned data centers — for the second time in just a few months.
2. Pima County, Arizona — Opposition groups submitted twice the required number of signatures in a petition to put a rezoning proposal for a $3.6 billion data center project on the ballot in November.
3. Columbus, Ohio — A bill proposed in the Ohio Senate could severely restrict renewables throughout the state.
4. Converse and Niobrara Counties, Wyoming — The Wyoming State Board of Land Commissioners last week rescinded the leases for two wind projects in Wyoming after a district court judge ruled against their approval in December.