You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
As heat waves get worse, these fixes will help keep your home cool and energy efficient.

July 2023 will almost certainly be declared the hottest month ever recorded, but it is unlikely to hold that record for long. Climate change is making heat waves more frequent, intense, and longer-lasting across the U.S.
Adapting to this hotter future is often discussed at the scale of a city; measured in early warning systems, green spaces, and cooling centers. But there’s also a lot that individual homeowners can do to help their communities and protect themselves.
While the vast majority of American households — some 88% — use air conditioning for relief, homeowners would be wise to consider a variety of additional, “passive” cooling techniques. These are strategies that can keep your home at a safe temperature during a heat wave if the power goes out, an increasingly likely scenario. They will also save you a bit of money on energy bills. In a sense, adapting your home to extreme heat is just another way of thinking about how to make it more energy efficient.
These retrofits also have wider benefits. Since air conditioners work by transferring heat from inside your house outdoors, these fixes can cool down your neighborhood. They’ll cut carbon emissions and air pollution by lowering demand for electricity. If widely adopted, they’ll also help prevent blackouts and could shrink the amount of renewable energy projects that need to be built to replace fossil fuels, alleviating pressure on conservation.
I spoke with Steve Easley, a building science consultant who specializes in energy efficiency, and Shawn Maurer, technical director of the Smart Energy Design Assistance Center at the University of Illinois, about how homeowners should prioritize their options when it comes to passive cooling.
“I always recommend that people do a home energy audit from a certified HERS rater,” Easley told me, referring to the Home Energy Rating System, a nationally recognized system for inspecting and calculating a home’s energy performance. The auditor will tell you how leaky your house is, and how well your roof insulation, windows, and other parts of your house are working to keep out heat, and help you figure out what to attack first. (Easley also recommends getting at least three quotes for any of these solutions, because different contractors bid this work out very differently.)
Below are five things you can do to improve your home’s resilience to heat. Depending on a number of factors — such as where you live, how your house is constructed, and the condition it's in — the mileage you can get out of each of these measures will vary. The good news is that the federal government and many state governments offer tax credits and rebates for most of these solutions. The Inflation Reduction Act created the Energy Efficient Home Improvement tax credit, which offers homeowners up to $1,200 per year to spend on energy efficiency improvements. As part of that, you can claim $150 simply for getting an energy audit.
Maurer said the very first thing he would do to improve the efficiency of a home is to seal up any cracks where air can get in — for example, along the edges of the floors, around the windows, and in the ceiling around light fixtures. “That carries in moisture, heat, and everything from outdoors into the house. It's going to offset any air conditioned air you got inside the house. So air leakage is usually the place we recommend to start,” he said. “And then from there, it's what your budget can handle as far as adding more insulation to your house.”
Insulation comes in a wide range of materials, such as fiberglass and rock wool, blown cellulose, and rigid foam boards. It can be blown into your walls, installed on the floor of the attic, or underneath your roof deck. It’s a jack-of-all-trades when it comes to energy efficiency, since it keeps heat inside in the winter and blocks it from entering in the summer. That means it’s a great option for those in colder climates that also want to prepare their homes for hotter summers.
A 2021 study by a group of researchers at Lawrence Berkeley National Lab modeled the efficacy of a wide array of passive cooling measures in low-income homes in Fresno, California. It found that roof insulation, along with solar-control window films, which we’ll get to in a moment, were the two most effective ways to keep heat from entering the buildings. However, the authors note that roof insulation is an expensive major retrofit, and recommend that it only be done when the roof needs replacement.
A good first step might be finding out what kind of insulation you already have. The most important metric when it comes to insulation is called “R-value,” and the higher the number, the more effective it is. Older homes may have attic insulation as low as R-13, whereas modern building codes typically require insulation between R-38 and R-60.
The new federal tax credit offers up to 30% of the total cost of a project for air sealing and insulation, maxing out at $1,200 total. (Labor costs are not covered by the credit.)
Get one great climate story in your inbox every day:
Having a light-colored roof and exterior will most certainly keep your home cooler than darker options, but not all light colors are created equal. “Cool” roofs and walls are made with special materials that reflect solar energy back into space, preventing it from being absorbed by the building. They also have high “thermal emittance,” meaning they release a lot of the heat that they do absorb, rather than sending it indoors.
All kinds of materials have been developed with these properties. For roofs, there are tiles, shingles, membranes, liquid coatings, and products made of slate, wood, and metal.
Cool roofs don’t necessarily have to be white, although the color does work very well. According to a database maintained by the Cool Roof Ratings Council, the most effective products tend to be bright white coatings, but there are also gray, green, blue, brown, and tan products that are rated highly.
For reflective walls, the most effective products similarly come in white and other light-colored paints, which can reflect 60 to 90 percent of sunlight when new. An extensive 2019 study of reflective wall paints by the same group at Lawrence Berkeley National Lab found that cool walls can reduce annual energy use in single-family homes in warmer U.S. climates by 2% to 8.5%.
Easley said it’s worth considering a cool roof if you have a central air conditioning system in your attic. Otherwise, attics in places like Arizona can get upwards of 130 degrees, taxing the equipment and forcing it to work harder. If your attic isn’t home to your AC, it may only make financial sense to do this kind of retrofit if your house is already in need of a new paint job or your roof needs work.
But it’s probably not worth considering a cool roof if you live in a colder climate, like the Northeast and upper Midwest, since cool roofs can actually make it colder inside in the winter.
There’s no federal incentives for cool roofs, but several states and utilities offer rebates.
This is a big category, and it’s easy to get overwhelmed by the options. Starting with those that will likely cost the most to the least, you can:
• Replace your windows altogether.
• Add storm windows to the interior or exterior of your existing glass.
• Purchase films that can be applied to the existing glass to increase its reflectivity.
• Install external shutters or awnings that block the sun.
• Install interior blinds and curtains that block the sun.
Here’s a rundown of each option.
New windows: Replacing your windows can cost tens of thousands of dollars, so unless they are already in need of repair, you may want to hold off on that option. But when the day does come around, you’ll want to look for “Low-E” windows, which stands for low emissivity. The inside of the glass is coated with microscopic layers of silver that reflect heat while still allowing light to pass through.
Within that category, you’ll also want to look for windows that have what’s called a low “solar heat gain coefficient.” This measures how much heat is absorbed by the glass and transferred inside. It’s rated on a scale of 0 to 1. If you live somewhere that’s sunny year round like Arizona, you ideally want one rated 0.25 or lower.
Through 2032, homeowners can claim up to $600 in federal tax credits for purchasing Energy Star rated windows.
Storm windows: Rather than replacing your windows entirely, it’s far cheaper to install storm windows with Low-E glass, which basically involves bolting another window to the outside of your house. Storm windows have an added benefit of improving air sealing, eliminating drafts.
Film: An even lower-cost option is to look into films with low solar heat gain coefficients that can be applied to existing windows. However, Easeley warned that many manufacturers will void your warranty if you add films to your windows.
Shutters, awnings, blinds, and curtains: Exterior shutters and overhangs that block the sun from ever reaching your windows will generally be more effective than interior shades or blinds, but all of these measures can help. “Window blinds and curtains are really dirt cheap ways to control energy,” said Maurer. “It’s not a very good buffer, but it’s something.”
The Berkeley study on passive cooling measures notes that blinds moderately improve how much heat from the sun enters your home, but they can feel more effective by reducing the sensation of sunlight streaming into your house.
If you still have any incandescent lights, they can also be a significant source of heat. They should be replaced with LED lights.
Planting trees, climbing ivy, and other vegetation can also passively cool your house by shading both your house and any surrounding pavement. However, if you have solar panels, or plan to get them in the future, do not plant trees on the south side of your home as it may reduce the solar system’s effectiveness.
Maurer cautioned that if you do a bunch of work in your home to reduce your cooling needs, you’ll want to keep that in mind if you ever have to replace your air conditioner. He advised having a contractor come in to re-measure what size system you need, since doing a like-for-like replacement will probably be overkill and could result in it malfunctioning.
Read another helpful guide about heat:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.