You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Harmonizing data across federal agencies will go a long, long way toward simplifying environmental reviews.

Comprehensive permitting reform remains elusive.
In spite of numerous promising attempts — the Fiscal Responsibility Act of 2023, for instance, which delivered only limited improvements, and the failed Manchin-Barrasso bill of last year — the U.S. has repeatedly failed to overhaul its clogged federal infrastructure approval process. Even now there are draft bills and agreements in principle, but the Trump administration’s animus towards renewable energy has undermined Democratic faith in any deal. Less obvious but no less important, key Republicans are quietly disengaged, hesitant to embrace the federal transmission reform that negotiators see as essential to the package.
Despite this grim prognosis, Congress could still improve implementation of a key permitting barrier, the National Environmental Policy Act, by fixing the federal government’s broken systems for managing and sharing NEPA documentation and data. These opaque and incompatible systems frustrate essential interagency coordination, contributing immeasurably to NEPA’s delays and frustrations. But it’s a problem with clear, available, workable solutions — and at low political cost.
Both of us saw these problems firsthand. Marc helped manage NEPA implementation at the Environmental Protection Agency, observing the federal government’s slow and often flailing attempts to use technology to improve internal agency processes. Elizabeth, meanwhile, spent two years overcoming NEPA’s atomized data ecosystem to create a comprehensive picture of NEPA litigation.
Even so, it’s difficult to illustrate the scope of the problem without experiencing it. Some agencies have bespoke systems to house crucial and unique geographic information on project areas. Other agencies lack ready access to that information, even as they examine project impacts another agency may have already studied. Similarly, there is no central database of scientific studies undertaken in support of environmental reviews. Some agencies maintain repositories for their environmental assessments — arduous but less intense environmental reviews than the environmental impact statements NEPA requires when a federal agency action substantially impacts the environment. But there’s still no unified, cross-agency EA database. This leaves agencies unable to efficiently find and leverage work that could inform their own reviews. Indeed, agencies may be duplicating or re-duplicating tedious, time-consuming efforts.
NEPA implementation also relies on interagency cooperation. There, too, agencies’ divergent ways of classifying and communicating about project data throws up impediments. Agencies rely on arcane data formats and often incompatible platforms. (For the tech-savvy, an agency might have a PDF-only repository while another has XML-based data formats.) With few exceptions, it’s difficult for cooperating agencies to even know the status of a given review. And it produces a comedy of errors for agencies trying to recruit and develop younger, tech-savvy staff. Your workplace might use something like Asana or Trello to guide your workflow, a common language all teams use to communicate. The federal government has a bureaucratic Tower of Babel.
Yet another problem, symptomatic of inadequate transparency, is that we have only limited data on the thousands of NEPA court cases. To close the gap, we sought to understand — using data — just how sprawling and unwieldy post-review NEPA litigation had become. We read every available district and appellate opinion that mentioned NEPA from 2013 to 2022 (over 2,000 cases), screened out those without substantive NEPA claims, and catalogued their key characteristics — plaintiffs, court timelines and outcomes, agencies, project types, and so on. Before we did this work, no national NEPA litigation database provided policymakers with actionable, data-driven insights into court outcomes for America’s most-litigated environmental statute. But even our painstaking efforts couldn’t unearth a full dataset that included, for example, decisions taken by administrative judges within agencies.
We can’t manage what we can’t measure. And every study in this space, including ours, struggles with this type of sample bias. Litigated opinions are neither random nor representative; they skew toward high-stakes disputes with uncertain outcomes and underrepresent cases that settle on clear agency error or are dismissed early for weak claims. Our database illuminates litigation patterns and timelines. But like the rest of the literature, it cannot offer firm conclusions about NEPA’s effectiveness. We need a more reliable universe of all NEPA reviews to have any chance — even a flawed one — at assessing the law’s outcomes.
In the meantime, NEPA policy debates often revolve unproductively around assumptions and anecdotes. For example, Democrats can point to instances when early and robust public engagement appeared essential for bringing projects to completion. But in the absence of hard data to support this view, GOP reformers often prefer to limit public participation in the name of speeding the review process. The rebuttal to that approach is persuasive: Failing to engage potential project opponents on their legitimate concerns merely drives them to interfere with the project outside the NEPA process. Yet this rebuttal relies on assumptions, not evidence. Only transparent data can resolve the dispute.
Some of the necessary repair work is already underway at the Council on Environmental Quality, the White House entity that coordinates and guides agencies’ NEPA implementation. In May, CEQ published a “NEPA and Permitting Data and Technology Standard” so that agencies could voluntarily align on how to communicate NEPA information with each other. Then in June, after years using a lumbering Excel file containing agencies’ categorical exclusions — the types of projects that don’t need NEPA review, as determined by law or regulation — CEQ unveiled a searchable database called the Categorical Exclusion Explorer. The Pacific Northwest National Laboratory’s PermitAI has leveraged the EPA’s repository of environmental impact statements and, more recently, environmental review documents from other agencies to create an AI-powered queryable database. The FAST-41 Dashboard has brought transparency and accountability to a limited number of EISs.
But across all these efforts, huge gaps in data, resources, and enforcement authority remain. President Trump has issued directives to agencies to speed environmental reviews, evincing an interest in filling the gaps. But those directives don’t and can’t compel the full scope of necessary technological changes.
Some members of Congress are tuned in and trying to do something about this. Representatives Scott Peters, a Democrat from California, and Dusty Johnson, Republican of South Dakota, deserve credit for introducing the bipartisan ePermit Act to address all of these challenges. They’ve identified key levers to improve interagency communication, track litigation, and create a common and publicly accessible storehouse of NEPA data. Crucially, they recognize the make-or-break role of agency Chief Information Officers who are accountable for information security. Our own attempts to upgrade agency technology taught us that the best way to do so is by working with — not around — CIOs who have a statutory mandate.
The ePermit Act would also lay the groundwork for more extensive and innovative deployment of artificial intelligence in NEPA processes. Despite AI’s continuing challenges around information accuracy and traceability, large language models may eventually be able to draft the majority of an EIS on their own, with humans involved to oversee.
AI can also address hidden pain points in the NEPA process. It can hasten the laborious summarization and incorporation of public comment, reducing the legal and practical risk that agencies miss crucial public feedback. It can also help determine whether sponsor applications are complete, frequently a point of friction between sponsors and agencies. AI can also assess whether projects could be adapted to a categorical exclusion, entirely removing unnecessary reviews. And finally, AI tools are a concession to the rapid turnover of NEPA personnel and depleted institutional knowledge — an acute problem of late.
Comprehensive, multi-agency legislation like the ePermit Act will take time to implement — Congress may want or even need to reform NEPA before we get the full benefit of technology improvements. But that does not diminish the urgency or value of this effort. Even Representative Jared Huffman of California, a key Democrat on the House Natural Resources Committee with impeccable environmental credentials, offered words of support for the ePermit Act, while opposing other NEPA reforms.
Regardless of what NEPA looks like in coming years, this work must begin at some point. Under every flavor of NEPA reform, agencies will need to share data, coordinate across platforms, and process information. That remains true even as court-driven legal reforms and Trump administration regulatory changes wreak havoc with NEPA’s substance and implementation. Indeed, whether or not courts, Congress, or the administration reduce NEPA’s reach, even truncated reviews would still be handicapped by broken systems. Fixing the technology infrastructure now is a way to future-proof NEPA.
The solution won’t be as simple as getting agencies to use Microsoft products. It’s long past time to give agencies the tools they need — an interoperable, government-wide platform for NEPA data and project management, supported by large language models. This is no simple task. To reap the full benefits of these solutions will require an act of Congress that both provides funding for multi-agency software and requires all agencies to act in concert. This mandate is necessary to induce movement from actors within agencies who are slow to respond to non-binding CEQ directives that take time away from statutorily required work, or those who resist discretionary changes to agency software as cybersecurity risks, no matter how benign those changes may be. Without appropriated money or congressional edict, the government’s efforts in this area will lack the resources and enforcement levers to ensure reforms take hold.
Technology improvements won’t cure everything that ails NEPA. This bill won’t fix the deep uncertainty unleashed by the legal chaos of the last year. But addressing these issues is a no-regrets move with bipartisan and potentially even White House support. Let it be done.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In practice, direct lithium extraction doesn’t quite make sense, but 2026 could its critical year.
Lithium isn’t like most minerals.
Unlike other battery metals such as nickel, cobalt, and manganese, which are mined from hard-rock ores using drills and explosives, the majority of the world’s lithium resources are found in underground reservoirs of extremely salty water, known as brine. And while hard-rock mining does play a major role in lithium extraction — the majority of the world’s actual production still comes from rocks — brine mining is usually significantly cheaper, and is thus highly attractive wherever it’s geographically feasible.
Reaching that brine and extracting that lithium — so integral to grid-scale energy storage and electric vehicles alike — is typically slow, inefficient, and environmentally taxing. This year, however, could represent a critical juncture for a novel process known as Direct Lithium Extraction, or DLE, which promises to be faster, cleaner, and capable of unlocking lithium across a wider range of geographies.
The traditional method of separating lithium from brine is straightforward but time-consuming. Essentially, the liquid is pumped through a series of vast, vividly colored solar evaporation ponds that gradually concentrate the mineral over the course of more than a year.
It works, but by the time the lithium is extracted, refined, and ready for market, both the demand and the price may have shifted significantly, as evidenced by the dramatic rise and collapse of lithium prices over the past five years. And while evaporation ponds are well-suited to the arid deserts of Chile and Argentina where they’re most common, the geology, brine chemistry, and climate of the U.S. regions with the best reserves are generally not amenable to this approach. Not to mention the ponds require a humongous land footprint, raising questions about land use and ecological degradation.
DLE forgoes these expansive pools, instead pulling lithium-rich brine into a processing unit, where some combination of chemicals, sorbents, or membranes isolate and extricate the lithium before the remaining brine gets injected back underground. This process can produce battery-grade lithium in a matter of hours or days, without the need to transport concentrated brine to separate processing facilities.
This tech has been studied for decades, but aside from a few Chinese producers using it in combination with evaporation ponds, it’s largely remained stuck in the research and development stage. Now, several DLE companies are looking to build their first commercial plants in 2026, aiming to prove that their methods can work at scale, no evaporation ponds needed.
“I do think this is the year where DLE starts getting more and more relevant,” Federico Gay, a principal lithium analyst at Benchmark Mineral Intelligence, told me.
Standard Lithium, in partnership with oil and gas major Equinor, aims to break ground this year on its first commercial facility in Arkansas’s lithium-rich Smackover Formation, while the startup Lilac Solution also plans to commence construction on a commercial plant at Utah’s Great Salt Lake. Mining giant Rio Tinto is progressing with plans to build a commercial DLE facility in Argentina, which is already home to one commercial DLE plant — the first outside of China. That facility is run by the French mining company Eramet, which plans to ramp production to full capacity this year.
If “prices are positive” for lithium, Gay said, he expects that the industry will also start to see mergers and acquisitions this year among technology providers and larger corporations such as mining giants or oil and gas majors, as “some of the big players will try locking in or buying technology to potentially produce from the resources they own.” Indeed, ExxonMobil and Occidental Petroleum are already developing DLE projects, while major automakers have invested, too.
But that looming question of lithium prices — and what it means for DLE’s viability — is no small thing. When EV and battery storage demand boomed at the start of the decade, lithium prices climbed roughly 10-fold through 2022 before plunging as producers aggressively ramped output, flooding the market just as EV demand cooled. And while prices have lately started to tick upward again, there’s no telling whether the trend will continue.
“Everyone seems to have settled on a consensus view that $20,000 a tonne is where the market’s really going to be unleashed,” Joe Arencibia, president of the DLE startup Summit Nanotech, told me, referring to the lithium extraction market in all of its forms — hard rock mining, traditional brine, and DLE. “As far as we’re concerned, a market with $14,000, $15,000 a tonne is fine and dandy for us.”
Lilac Solutions, the most prominent startup in the DLE space, expects that its initial Utah project — which will produce a relatively humble 5,000 metric tons of lithium per year — will be profitable even if lithium prices hit last year’s low of $8,300 per metric ton. That’s according to the company’s CEO Raef Sully, who also told me that because Utah’s reserves are much lower grade than South America’s, Lilac could produce lithium for a mere $3,000 to $3,500 in Chile if it scaled production to 15,000 or 20,000 metric tons per year.
What sets Lilac apart from other DLE projects is its approach to separating lithium from brine. Most companies are pursuing adsorption-based processes, in which lithium ions bind to an aluminum-based sorbent, which removes them from surrounding impurities. But stripping the lithium from the sorbent generally requires a good deal of freshwater, which is not ideal given that many lithium-rich regions are parched deserts.
Lilac’s tech relies on an ion-exchange process in which small ceramic beads selectively capture lithium ions from the brine in their crystalline structure, swapping them for hydrogen ions. “The crystal structure seems to have a really strong attraction to lithium and nothing else,” Sully told me. Acid then releases the concentrated lithium. When compared with adsorption-based tech, he explained, this method demands far fewer materials and is “much more selective for lithium ions versus other ions,” making the result purer and thus cheaper to process into a battery-grade material.
Because adsorption-based DLE is already operating commercially and ion-exchange isn’t, Lilac has much to prove with its first commercial facility, which is expected to finalize funding and begin construction by the middle of this year.
Sully estimates that Lilac will need to raise around $250 million to build its first commercial facility, which has already been delayed due to the price slump. The company’s former CEO and current CTO Dave Snydacker told me in 2023 that he expected to commence commercial operations by the end of 2024, whereas now the company plans to bring its Utah plant online at the end of 2027 or early 2028.
“Two years ago, with where the market was, nobody was going to look at that investment,” Sully explained, referring to its commercial plant. Investors, he said, were waiting to see what remained after the market bottomed out, which it now seems to have done. Lilac is still standing, and while there haven’t yet been any public announcements regarding project funding, Sully told me he’s confident that the money will come together in time to break ground in mid-2026.
It also doesn’t hurt that lithium prices have been on the rise for a few months, currently hovering around $20,000 per tonne. Gay thinks prices are likely to stabilize somewhere in this range, as stakeholders who have weathered the volatility now have a better understanding of the market.
At that price, hard rock mining would be a feasible option, though still more expensive than traditional evaporation ponds and far above what DLE producers are forecasting. And while some mines operated at a loss or mothballed their operations during the past few years, Gay thinks that even if prices stabilize, hard-rock mines will continue to be the dominant source of lithium for the foreseeable future due to sustained global investment across Africa, Brazil, Australia, and parts of Asia. The price may be steeper, but the infrastructure is also well-established and the economics are well-understood.
“I’m optimistic and bullish about DLE, but probably it won’t have the impact that it was thought about two or three years ago,” Gay told me, as the hype has died down and prices have cooled from their record high of around $80,000 per tonne. By 2040, Benchmark forecasts that DLE will make up 15% to 20% of the lithium market, with evaporation ponds continuing to be a larger contributor for the next decade or so, primarily due to the high upfront costs of DLE projects and the time required for them to reach economies of scale.
On average, Benchmark predicts that this tech will wind up in “the high end of the second quartile” of the cost curve, making DLE projects a lower mid-cost option. “So it’s good — not great, good. But we’ll have some DLE projects in the first quartile as well, so competing with very good evaporation assets,” Gay told me.
Unsurprisingly, the technology companies themselves are more bullish on their approach. Even though Arencibia predicts that evaporation ponds will continue to be about 25% cheaper, he thinks that “the majority of future brine projects will be DLE,” and that DLE will represent 25% or more of the future lithium market.
That forecast comes in large part because Chile — the world’s largest producer of lithium from brine — has stated in its National Lithium Strategy that all new projects should have an “obligatory requirement” to use novel, less ecologically disruptive production methods. Other nations with significant but yet-to-be exploited lithium brine resources, such as Bolivia, could follow suit.
Sully is even more optimistic, predicting that as lithium demand grows from about 1.5 million metric tons per year to around 3.5 million metric tons by 2035, the majority of that growth will come from DLE. “I honestly believe that there will be no more hard rock mines built in Australia or the U.S.,” he said, telling me that in ten years time, half of our lithium supply could “easily” come from DLE.
As a number of major projects break ground this year and the big players start consolidating, we’ll begin to get a sense of whose projections are most realistic. But it won’t be until some of these projects ramp up commercial production in the 2028 to 2030 timeframe that DLE’s market potential will really crystalize.
“If you’re not a very large player at the moment, I think it’s very difficult for you to proceed,” Sully told me, reflecting on how lithium’s price shocks have rocked the industry. Even with lithium prices ticking precariously upwards now, the industry is preparing for at least some level of continued volatility and uncertainty.
“Long term, who knows what [prices are] going to be,” Sully said. “I’ve given up trying to predict.”
A chat with CleanCapital founder Jon Powers.
This week’s conversation is with Jon Powers, founder of the investment firm CleanCapital. I reached out to Powers because I wanted to get a better understanding of how renewable energy investments were shifting one year into the Trump administration. What followed was a candid, detailed look inside the thinking of how the big money in cleantech actually views Trump’s war on renewable energy permitting.
The following conversation was lightly edited for clarity.
Alright, so let’s start off with a big question: How do investors in clean energy view Trump’s permitting freeze?
So, let’s take a step back. Look at the trend over the last decade. The industry’s boomed, manufacturing jobs are happening, the labor force has grown, investments are coming.
We [Clean Capital] are backed by infrastructure life insurance money. It’s money that wasn’t in this market 10 years ago. It’s there because these are long-term infrastructure assets. They see the opportunity. What are they looking for? Certainty. If somebody takes your life insurance money, and they invest it, they want to know it’s going to be there in 20 years in case they need to pay it out. These are really great assets – they’re paying for electricity, the panels hold up, etcetera.
With investors, the more you can manage that risk, the more capital there is out there and the better cost of capital there is for the project. If I was taking high cost private equity money to fund a project, you have to pay for the equipment and the cost of the financing. The more you can bring down the cost of financing – which has happened over the last decade – the cheaper the power can be on the back-end. You can use cheaper money to build.
Once you get that type of capital, you need certainty. That certainty had developed. The election of President Trump threw that into a little bit of disarray. We’re seeing that being implemented today, and they’re doing everything they can to throw wrenches into the growth of what we’ve been doing. They passed the bill affecting the tax credits, and the work they’re doing on permitting to slow roll projects, all of that uncertainty is damaging the projects and more importantly costs everyone down the road by raising the cost of electricity, in turn making projects more expensive in the first place. It’s not a nice recipe for people buying electricity.
But in September, I went to the RE+ conference in California – I thought that was going to be a funeral march but it wasn’t. People were saying, Now we have to shift and adjust. This is a huge industry. How do we get those adjustments and move forward?
Investors looked at it the same way. Yes, how will things like permitting affect the timeline of getting to build? But the fundamentals of supply and demand haven’t changed and in fact are working more in favor of us than before, so we’re figuring out where to invest on that potential. Also, yes federal is key, but state permitting is crucial. When you’re talking about distributed generation going out of a facility next to a data center, or a Wal-Mart, or an Amazon warehouse, that demand very much still exists and projects are being built in that middle market today.
What you’re seeing is a recalibration of risk among investors to understand where we put our money today. And we’re seeing some international money pulling back, and it all comes back to that concept of certainty.
To what extent does the international money moving out of the U.S. have to do with what Trump has done to offshore wind? Is that trade policy? Help us understand why that is happening.
I think it’s not trade policy, per se. Maybe that’s happening on the technology side. But what I’m talking about is money going into infrastructure and assets – for a couple of years, we were one of the hottest places to invest.
Think about a European pension fund who is taking money from a country in Europe and wanting to invest it somewhere they’ll get their money back. That type of capital has definitely been re-evaluating where they’ll put their money, and parallel, some of the larger utility players are starting to re-evaluate or even back out of projects because they’re concerned about questions around large-scale utility solar development, specifically.
Taking a step back to something else you said about federal permitting not being as crucial as state permitting–
That’s about the size of the project. Huge utility projects may still need federal approvals for transmission.
Okay. But when it comes to the trendline on community relations and social conflict, are we seeing renewable energy permitting risk increase in the U.S.? Decrease? Stay the same?
That has less to do with the administration but more of a well-structured fossil fuel campaign. Anti-climate, very dark money. I am not an expert on where the money comes from, but folks have tried to map that out. Now you’re even seeing local communities pass stuff like no energy storage [ordinances].
What’s interesting is that in those communities, we as an industry are not really present providing facts to counter this. That’s very frustrating for folks. We’re seeing these pass and honestly asking, Who was there?
Is the federal permitting freeze impacting investment too?
Definitely.
It’s not like you put money into a project all at once, right? It happens in these chunks. Let’s say there’s 10 steps for investing in a project. A little bit of money at step one, more money at step two, and it gradually gets more until you build the project. The middle area – permitting, getting approval from utilities – is really critical to the investments. So you’re seeing a little bit of a pause in when and how we make investments, because we sometimes don’t know if we’ll make it to, say, step six.
I actually think we’ll see the most impact from this in data center costs.
Can you explain that a bit more for me?
Look at northern Virginia for a second. There wasn’t a lot of new electricity added to that market but you all of the sudden upped demand for electricity by 20 percent. We’re literally seeing today all these utilities putting in rate hikes for consumers because it is literally a supply-demand question. If you can’t build new supply, it's going to be consumers paying for it, and even if you could build a new natural gas plant – at minimum that will happen four-to-six years from now. So over the next four years, we’ll see costs go up.
We’re building projects today that we invested in two years ago. That policy landscape we invested in two years ago hasn’t changed from what we invested into. But the policy landscape then changed dramatically.
If you wipe out half of what was coming in, there’s nothing backfilling that.
Plus more on the week’s biggest renewables fights.
Shelby County, Indiana – A large data center was rejected late Wednesday southeast of Indianapolis, as the takedown of a major Google campus last year continues to reverberate in the area.
Dane County, Wisconsin – Heading northwest, the QTS data center in DeForest we’ve been tracking is broiling into a major conflict, after activists uncovered controversial emails between the village’s president and the company.
White Pine County, Nevada – The Trump administration is finally moving a little bit of renewable energy infrastructure through the permitting process. Or at least, that’s what it looks like.
Mineral County, Nevada – Meanwhile, the BLM actually did approve a solar project on federal lands while we were gone: the Libra energy facility in southwest Nevada.
Hancock County, Ohio – Ohio’s legal system appears friendly for solar development right now, as another utility-scale project’s permits were upheld by the state Supreme Court.