You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
To do it right, you’re going to need a building science pro.
When Zara Bode, a musician from Brooklyn, New York, first walked into the old seven-bedroom Victorian in downtown Brattleboro, Vermont, it just felt right. Her husband, also a traveling musician, had grown up nearby. “You walk in this house and you’re like, oh, there’s a good vibe,” she told me. Since the 1890s, when it was built, it had been a community health center and a food co-op, before being lovingly restored by the older woman who sold it to Bode and her husband in January of 2020. Bode hoped to make it their forever home, a place for friends and family to gather.
Within a month of moving in, she and her husband both lost their incomes in the pandemic. Then they made a brutal discovery: the house was ruinously expensive to heat.
They spent all their time huddled in the kitchen with their two young children in front of the wood burning cookstove and kept the thermostat at 65. Even so, they were running through a full tank of oil every nine days. Each delivery cost more than $1,000, adding up to twice their mortgage every month. They had to ask for government emergency assistance.
Bode started asking around to other families, who told her about a state-funded program that gives out 0% weatherization loans with deferred repayment to low-income families. She got quotes from two different reputable companies, each of which proposed using polyurethane spray foam insulation in the large basement. The buzz in the community was that spray foam is a miracle product — so incredibly insulating that it would cut their heating oil needs down by two-thirds or or more. But Bode was protective of the old Victorian. “I knew it was lucky for us to get this house in the first place. We don’t have the money to make mistakes,” she says.
Without any outside expert to turn to, desperate for relief, and grateful for Vermont’s robust social safety net, she went for it.
She would come to regret it.
To hit its climate goals, the U.S. is going to have to upgrade its old housing stock. Residential energy use accounts for about 20% of U.S. carbon emissions, and the lion’s share of that energy is used to heat and cool homes. At the same time, low-income families are struggling more than ever to shoulder the financial burden of doing that. In 2023, the number of American families needing assistance jumped by 1.3 million to over 6 million.
The Inflation Reduction Act is aiming to tackle these twin crises, with a tax credit covering 30% of the cost of insulation and air-sealing materials, up to $1,200 annually per household. So far only New York has an active IRA-funded home rebate program, but more states have applied to start handing out funds to homeowners over the next year, which should also help shield Americans from the health effects of extreme temperatures.
The problem is, insulating an old home is a delicate and complex process. Improper installation can lead to mold, dry rot in your home’s framing and roof, and poor indoor air quality that can make you sick.
“It’s potentially a huge problem,” Francis Offerman, a.k.a. Bud, an industrial hygienist who does indoor air quality testing for homeowners (and lawyers) who suspect a house or apartment is making its inhabitants ill, told me. “Especially if your mindset is, we’re going to just spray foam the home, and that’s it.”
Bode reached out to me last year after she read my viral story for VT Digger, which raised the alarm about the risks of spray foam insulation in particular. (Though experts say any insulation done badly can cause problems.) She and her family had vacated their Victorian for a few days in early 2021 while the basement was spray foam insulated. When they moved back in, Bode was struck by the bad paint smell. That eventually went away, and oil deliveries dropped from every nine days to every three weeks.
But then she realized the basement, which used to be bone dry, was now damp all the time. She bought two industrial dehumidifiers that run constantly, and still the smell of mildew wafts up through the floorboards. Bode has allergies to mold and mildew and worries the bad air quality could affect her kids, who also have allergies and asthma. She’s had to move all her furniture and art out of the basement lest it get damaged.
When she saw my article, she felt a mix of emotions. On the one hand, after having her concerns dismissed by the insulation company, she finally felt validated. “That was the first time that I had heard about air exchangers and other things I can’t afford,” Bode told me about reading my article. But she wondered, “Did I ruin a house that’s been standing strong for 140 years?”
The kind of person that could have advised Bode on how to safely insulate her historic home would be someone trained in building science — that is, someone educated in the physics of buildings, who can identify moisture issues and air leaks, recommend appropriate materials and HVAC solutions, and give you a step-by-step plan for implementing them so your home stays healthy and whole.
Unfortunately, many insulation companies, architects, and contractors have either never heard of or are actively hostile to these concepts, which they see as expensive, unnecessary, overly complicated, and (in the case of many spray foam contractors) an impediment to making the sale.
“In the grand scheme of things, building science is a relatively new field,” Eric Werling, who recently retired after 30 years of directing the U.S. Department of Energy’s Building America program to run his own consulting business, told me. “People have studied structural engineering for thousands of years. But air-tightening buildings is a relatively new phenomenon.”
Up until the 1970s, people in the U.S. didn’t think much about insulation. Then the energy crisis struck, and oil shortages caused prices to skyrocket. President Jimmy Carter told Americans to put on a sweater and turn down the thermostat. Letting all that expensive energy flow outside suddenly seemed like a waste of money.
The Department of Energy launched its Weatherization Assistance Program in 1976 for low-income families and created efficiency standards for commercial buildings that relied on the new, synthetic materials that had emerged after WWII. The problem was, as homes and commercial buildings were sealed, a lot of people got sick. The most high profile cases were cancer from chronic radon exposure or quiet but shocking deaths from carbon monoxide poisoning. But there also emerged the autoimmune-adjacent condition called Sick Building Syndrome, a constellation of symptoms related to breathing in VOCs from furniture, carpeting, pesticides, and cleaning products circulating inside a tight building.
“The Department of Energy… screwed it up a lot at the very beginning,” Joe Lstiburek, a longtime building science consultant, told me. But the DOE started training its weatherization crews, establishing standards for proper insulation, and providing additional funding for safety measures, including mechanical ventilation. “America became a world leader at figuring out how not to rot houses and how not to kill people,” Lstiburek said.
Today, indoor air quality in the workplace has dramatically improved. Aspects of building science have been codified in residential homes as well, with some states requiring that new builds with a tight air seal include mechanical ventilation. But nobody I talked to could point to similar requirements for an existing home that has been retrofitted with insulation. And when I asked Lstiburek if low-income renters and homeowners have access to building science information and advice, he said, “No, they do not.”
According to Werling, there are still probably fewer than a thousand building science experts, and many are eyeing retirement. “Their teachings have impacted thousands –– probably hundreds of thousands –– of people in the construction industry.” He points to New York and Wisconsin as two states that have had robust contractor training programs for the longest. But he admits that’s still a small percentage of the millions of people involved in construction in the U.S.
“There are just too many companies with people who don’t know enough about the issues regarding moisture doing whatever they want and leaving the homeowner with the bill,” Chris West, a Vermont-based certified consultant and trainer for Passive House, a design standard for ultra-low-energy-consumption homes, told me. “Often these companies have some kind of caveat in their contract that makes the owner responsible for any future issues.”
To make things worse, our homes are more delicate today. New building construction has largely switched from rot- and mold-resistant materials such as hardwood and plaster to cheaper manufactured mold-prone materials like plywood and drywall.
“Green” or “eco” home programs that advise homeowners focus solely on energy efficiency, and tightened energy codes are requiring ever more robust insulation without taking into account existing moisture problems (such as a wet basement or unventilated bathroom), which are not rare. NIOSH estimates about half of all homes have some sort of moisture or mold issue. Residential contractors, architects, and developers, meanwhile, are largely free to ignore building science concepts and go about their business doing things the way they’ve always been done. And there doesn’t seem to be a good plan in place to upskill contractors for this next weatherization push or protect consumers from shoddy workmanship.
“There isn’t an educational track that’s indoor air quality in universities or colleges,” Offerman told me. “I’m 71 now. I’m gonna retire eventually, and where are the replacements?”
I’ve talked to several homeowners who have been burned by bad insulation jobs, and every one expressed dismay that contractors aren’t required to at least share the potential risks or downsides of getting your home weatherized. For example, homeowners may have to install mechanical ventilation at an extra cost of a few thousand dollars, and spray foam, as opposed to traditional batting insulation, is permanent and all but impossible to remediate or take out.
This information is largely hidden from consumers, even savvy ones like me. I was pitched spray foam by an energy auditor for my own old farmhouse, and I had to go out and interview a half dozen experts for an article and pay $1,000 to West to drive two hours down to audit our house (again) and come up with an alternative plan I was comfortable with.
Werling doesn’t want homeowners to be scared away from weatherizing their homes. “In the vast majority of cases, homeowners are better off when they insulate and air-seal their homes,” he said, “but it’s important to be aware that the house is a complicated system of parts. Hire the right contractor to help avoid potentially costly problems down the road.” He points to the Home Improvement Expert section of the Building America Solution Center from the U.S. Department of Energy, which has detailed checklists you can go over with your contractor to ensure the work is done properly. West suggests homeowners find a certified consultant at Passive House Institute US.
The building science experts I spoke to suggested things like an educational program for consumers so they know to ask about ventilation, third party inspections before and after weatherization projects with the results entered into the public record, pre-sale energy audits, and mandatory building science training for contractors and their crews. Offerman said weatherization programs should hold installers accountable for insulating and ventilating according to the latest building science standards as a condition of receiving funds.
The question is how many homeowners like Zara will have their homes and health damaged before the situation is addressed. “It’s not that we don’t know that this is happening,” Listiburek says. “It’s that it’s not painful enough yet.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A conversation with VDE Americas CEO Brian Grenko.
This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.
The following conversation has been lightly edited for clarity.
Hiya Brian. So why’d you get into the hail issue?
Obviously solar panels are made with glass that can allow the sunlight to come through. People have to remember that when you install a project, you’re financing it for 35 to 40 years. While the odds of you getting significant hail in California or Arizona are low, it happens a lot throughout the country. And if you think about some of these large projects, they may be in the middle of nowhere, but they are taking hundreds if not thousands of acres of land in some cases. So the chances of them encountering large hail over that lifespan is pretty significant.
We partnered with one of the country’s foremost experts on hail and developed a really interesting technology that can digest radar data and tell folks if they’re developing a project what the [likelihood] will be if there’s significant hail.
Solar panels can withstand one-inch hail – a golfball size – but once you get over two inches, that’s when hail starts breaking solar panels. So it’s important to understand, first and foremost, if you’re developing a project, you need to know the frequency of those events. Once you know that, you need to start thinking about how to design a system to mitigate that risk.
The government agencies that look over land use, how do they handle this particular issue? Are there regulations in place to deal with hail risk?
The regulatory aspects still to consider are about land use. There are authorities with jurisdiction at the federal, state, and local level. Usually, it starts with the local level and with a use permit – a conditional use permit. The developer goes in front of the township or the city or the county, whoever has jurisdiction of wherever the property is going to go. That’s where it gets political.
To answer your question about hail, I don’t know if any of the [authority having jurisdictions] really care about hail. There are folks out there that don’t like solar because it’s an eyesore. I respect that – I don’t agree with that, per se, but I understand and appreciate it. There’s folks with an agenda that just don’t want solar.
So okay, how can developers approach hail risk in a way that makes communities more comfortable?
The bad news is that solar panels use a lot of glass. They take up a lot of land. If you have hail dropping from the sky, that’s a risk.
The good news is that you can design a system to be resilient to that. Even in places like Texas, where you get large hail, preparing can mean the difference between a project that is destroyed and a project that isn’t. We did a case study about a project in the East Texas area called Fighting Jays that had catastrophic damage. We’re very familiar with the area, we work with a lot of clients, and we found three other projects within a five-mile radius that all had minimal damage. That simple decision [to be ready for when storms hit] can make the complete difference.
And more of the week’s big fights around renewable energy.
1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.
2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.
3. Garrett County, Maryland – Fight readers tell me they’d like to hear a piece of good news for once, so here’s this: A 300-megawatt solar project proposed by REV Solar in rural Maryland appears to be moving forward without a hitch.
4. Stark County, Ohio – The Ohio Public Siting Board rejected Samsung C&T’s Stark Solar project, citing “consistent opposition to the project from each of the local government entities and their impacted constituents.”
5. Ingham County, Michigan – GOP lawmakers in the Michigan State Capitol are advancing legislation to undo the state’s permitting primacy law, which allows developers to evade municipalities that deny projects on unreasonable grounds. It’s unlikely the legislation will become law.
6. Churchill County, Nevada – Commissioners have upheld the special use permit for the Redwood Materials battery storage project we told you about last week.
Long Islanders, meanwhile, are showing up in support of offshore wind, and more in this week’s edition of The Fight.
Local renewables restrictions are on the rise in the Hawkeye State – and it might have something to do with carbon pipelines.
Iowa’s known as a renewables growth area, producing more wind energy than any other state and offering ample acreage for utility-scale solar development. This has happened despite the fact that Iowa, like Ohio, is home to many large agricultural facilities – a trait that has often fomented conflict over specific projects. Iowa has defied this logic in part because the state was very early to renewables, enacting a state portfolio standard in 1983, signed into law by a Republican governor.
But something else is now on the rise: Counties are passing anti-renewables moratoria and ordinances restricting solar and wind energy development. We analyzed Heatmap Pro data on local laws and found a rise in local restrictions starting in 2021, leading to nearly 20 of the state’s 99 counties – about one fifth – having some form of restrictive ordinance on solar, wind or battery storage.
What is sparking this hostility? Some of it might be counties following the partisan trend, as renewable energy has struggled in hyper-conservative spots in the U.S. But it may also have to do with an outsized focus on land use rights and energy development that emerged from the conflict over carbon pipelines, which has intensified opposition to any usage of eminent domain for energy development.
The central node of this tension is the Summit Carbon Solutions CO2 pipeline. As we explained in a previous edition of The Fight, the carbon transportation network would cross five states, and has galvanized rural opposition against it. Last November, I predicted the Summit pipeline would have an easier time under Trump because of his circle’s support for oil and gas, as well as the placement of former North Dakota Governor Doug Burgum as interior secretary, as Burgum was a major Summit supporter.
Admittedly, this prediction has turned out to be incorrect – but it had nothing to do with Trump. Instead, Summit is now stalled because grassroots opposition to the pipeline quickly mobilized to pressure regulators in states the pipeline is proposed to traverse. They’re aiming to deny the company permits and lobbying state legislatures to pass bills banning the use of eminent domain for carbon pipelines. One of those states is South Dakota, where the governor last month signed an eminent domain ban for CO2 pipelines. On Thursday, South Dakota regulators denied key permits for the pipeline for the third time in a row.
Another place where the Summit opposition is working furiously: Iowa, where opposition to the CO2 pipeline network is so intense that it became an issue in the 2020 presidential primary. Regulators in the state have been more willing to greenlight permits for the project, but grassroots activists have pressured many counties into some form of opposition.
The same counties with CO2 pipeline moratoria have enacted bans or land use restrictions on developing various forms of renewables, too. Like Kossuth County, which passed a resolution decrying the use of eminent domain to construct the Summit pipeline – and then three months later enacted a moratorium on utility-scale solar.
I asked Jessica Manzour, a conservation program associate with Sierra Club fighting the Summit pipeline, about this phenomenon earlier this week. She told me that some counties are opposing CO2 pipelines and then suddenly tacking on or pivoting to renewables next. In other cases, counties with a burgeoning opposition to renewables take up the pipeline cause, too. In either case, this general frustration with energy companies developing large plots of land is kicking up dust in places that previously may have had a much lower opposition risk.
“We painted a roadmap with this Summit fight,” said Jess Manzour, a campaigner with Sierra Club involved in organizing opposition to the pipeline at the grassroots level, who said zealous anti-renewables activists and officials are in some cases lumping these items together under a broad umbrella. ”I don’t know if it’s the people pushing for these ordinances, rather than people taking advantage of the situation.”