You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
To do it right, you’re going to need a building science pro.
When Zara Bode, a musician from Brooklyn, New York, first walked into the old seven-bedroom Victorian in downtown Brattleboro, Vermont, it just felt right. Her husband, also a traveling musician, had grown up nearby. “You walk in this house and you’re like, oh, there’s a good vibe,” she told me. Since the 1890s, when it was built, it had been a community health center and a food co-op, before being lovingly restored by the older woman who sold it to Bode and her husband in January of 2020. Bode hoped to make it their forever home, a place for friends and family to gather.
Within a month of moving in, she and her husband both lost their incomes in the pandemic. Then they made a brutal discovery: the house was ruinously expensive to heat.
They spent all their time huddled in the kitchen with their two young children in front of the wood burning cookstove and kept the thermostat at 65. Even so, they were running through a full tank of oil every nine days. Each delivery cost more than $1,000, adding up to twice their mortgage every month. They had to ask for government emergency assistance.
Bode started asking around to other families, who told her about a state-funded program that gives out 0% weatherization loans with deferred repayment to low-income families. She got quotes from two different reputable companies, each of which proposed using polyurethane spray foam insulation in the large basement. The buzz in the community was that spray foam is a miracle product — so incredibly insulating that it would cut their heating oil needs down by two-thirds or or more. But Bode was protective of the old Victorian. “I knew it was lucky for us to get this house in the first place. We don’t have the money to make mistakes,” she says.
Without any outside expert to turn to, desperate for relief, and grateful for Vermont’s robust social safety net, she went for it.
She would come to regret it.
To hit its climate goals, the U.S. is going to have to upgrade its old housing stock. Residential energy use accounts for about 20% of U.S. carbon emissions, and the lion’s share of that energy is used to heat and cool homes. At the same time, low-income families are struggling more than ever to shoulder the financial burden of doing that. In 2023, the number of American families needing assistance jumped by 1.3 million to over 6 million.
The Inflation Reduction Act is aiming to tackle these twin crises, with a tax credit covering 30% of the cost of insulation and air-sealing materials, up to $1,200 annually per household. So far only New York has an active IRA-funded home rebate program, but more states have applied to start handing out funds to homeowners over the next year, which should also help shield Americans from the health effects of extreme temperatures.
The problem is, insulating an old home is a delicate and complex process. Improper installation can lead to mold, dry rot in your home’s framing and roof, and poor indoor air quality that can make you sick.
“It’s potentially a huge problem,” Francis Offerman, a.k.a. Bud, an industrial hygienist who does indoor air quality testing for homeowners (and lawyers) who suspect a house or apartment is making its inhabitants ill, told me. “Especially if your mindset is, we’re going to just spray foam the home, and that’s it.”
Bode reached out to me last year after she read my viral story for VT Digger, which raised the alarm about the risks of spray foam insulation in particular. (Though experts say any insulation done badly can cause problems.) She and her family had vacated their Victorian for a few days in early 2021 while the basement was spray foam insulated. When they moved back in, Bode was struck by the bad paint smell. That eventually went away, and oil deliveries dropped from every nine days to every three weeks.
But then she realized the basement, which used to be bone dry, was now damp all the time. She bought two industrial dehumidifiers that run constantly, and still the smell of mildew wafts up through the floorboards. Bode has allergies to mold and mildew and worries the bad air quality could affect her kids, who also have allergies and asthma. She’s had to move all her furniture and art out of the basement lest it get damaged.
When she saw my article, she felt a mix of emotions. On the one hand, after having her concerns dismissed by the insulation company, she finally felt validated. “That was the first time that I had heard about air exchangers and other things I can’t afford,” Bode told me about reading my article. But she wondered, “Did I ruin a house that’s been standing strong for 140 years?”
The kind of person that could have advised Bode on how to safely insulate her historic home would be someone trained in building science — that is, someone educated in the physics of buildings, who can identify moisture issues and air leaks, recommend appropriate materials and HVAC solutions, and give you a step-by-step plan for implementing them so your home stays healthy and whole.
Unfortunately, many insulation companies, architects, and contractors have either never heard of or are actively hostile to these concepts, which they see as expensive, unnecessary, overly complicated, and (in the case of many spray foam contractors) an impediment to making the sale.
“In the grand scheme of things, building science is a relatively new field,” Eric Werling, who recently retired after 30 years of directing the U.S. Department of Energy’s Building America program to run his own consulting business, told me. “People have studied structural engineering for thousands of years. But air-tightening buildings is a relatively new phenomenon.”
Up until the 1970s, people in the U.S. didn’t think much about insulation. Then the energy crisis struck, and oil shortages caused prices to skyrocket. President Jimmy Carter told Americans to put on a sweater and turn down the thermostat. Letting all that expensive energy flow outside suddenly seemed like a waste of money.
The Department of Energy launched its Weatherization Assistance Program in 1976 for low-income families and created efficiency standards for commercial buildings that relied on the new, synthetic materials that had emerged after WWII. The problem was, as homes and commercial buildings were sealed, a lot of people got sick. The most high profile cases were cancer from chronic radon exposure or quiet but shocking deaths from carbon monoxide poisoning. But there also emerged the autoimmune-adjacent condition called Sick Building Syndrome, a constellation of symptoms related to breathing in VOCs from furniture, carpeting, pesticides, and cleaning products circulating inside a tight building.
“The Department of Energy… screwed it up a lot at the very beginning,” Joe Lstiburek, a longtime building science consultant, told me. But the DOE started training its weatherization crews, establishing standards for proper insulation, and providing additional funding for safety measures, including mechanical ventilation. “America became a world leader at figuring out how not to rot houses and how not to kill people,” Lstiburek said.
Today, indoor air quality in the workplace has dramatically improved. Aspects of building science have been codified in residential homes as well, with some states requiring that new builds with a tight air seal include mechanical ventilation. But nobody I talked to could point to similar requirements for an existing home that has been retrofitted with insulation. And when I asked Lstiburek if low-income renters and homeowners have access to building science information and advice, he said, “No, they do not.”
According to Werling, there are still probably fewer than a thousand building science experts, and many are eyeing retirement. “Their teachings have impacted thousands –– probably hundreds of thousands –– of people in the construction industry.” He points to New York and Wisconsin as two states that have had robust contractor training programs for the longest. But he admits that’s still a small percentage of the millions of people involved in construction in the U.S.
“There are just too many companies with people who don’t know enough about the issues regarding moisture doing whatever they want and leaving the homeowner with the bill,” Chris West, a Vermont-based certified consultant and trainer for Passive House, a design standard for ultra-low-energy-consumption homes, told me. “Often these companies have some kind of caveat in their contract that makes the owner responsible for any future issues.”
To make things worse, our homes are more delicate today. New building construction has largely switched from rot- and mold-resistant materials such as hardwood and plaster to cheaper manufactured mold-prone materials like plywood and drywall.
“Green” or “eco” home programs that advise homeowners focus solely on energy efficiency, and tightened energy codes are requiring ever more robust insulation without taking into account existing moisture problems (such as a wet basement or unventilated bathroom), which are not rare. NIOSH estimates about half of all homes have some sort of moisture or mold issue. Residential contractors, architects, and developers, meanwhile, are largely free to ignore building science concepts and go about their business doing things the way they’ve always been done. And there doesn’t seem to be a good plan in place to upskill contractors for this next weatherization push or protect consumers from shoddy workmanship.
“There isn’t an educational track that’s indoor air quality in universities or colleges,” Offerman told me. “I’m 71 now. I’m gonna retire eventually, and where are the replacements?”
I’ve talked to several homeowners who have been burned by bad insulation jobs, and every one expressed dismay that contractors aren’t required to at least share the potential risks or downsides of getting your home weatherized. For example, homeowners may have to install mechanical ventilation at an extra cost of a few thousand dollars, and spray foam, as opposed to traditional batting insulation, is permanent and all but impossible to remediate or take out.
This information is largely hidden from consumers, even savvy ones like me. I was pitched spray foam by an energy auditor for my own old farmhouse, and I had to go out and interview a half dozen experts for an article and pay $1,000 to West to drive two hours down to audit our house (again) and come up with an alternative plan I was comfortable with.
Werling doesn’t want homeowners to be scared away from weatherizing their homes. “In the vast majority of cases, homeowners are better off when they insulate and air-seal their homes,” he said, “but it’s important to be aware that the house is a complicated system of parts. Hire the right contractor to help avoid potentially costly problems down the road.” He points to the Home Improvement Expert section of the Building America Solution Center from the U.S. Department of Energy, which has detailed checklists you can go over with your contractor to ensure the work is done properly. West suggests homeowners find a certified consultant at Passive House Institute US.
The building science experts I spoke to suggested things like an educational program for consumers so they know to ask about ventilation, third party inspections before and after weatherization projects with the results entered into the public record, pre-sale energy audits, and mandatory building science training for contractors and their crews. Offerman said weatherization programs should hold installers accountable for insulating and ventilating according to the latest building science standards as a condition of receiving funds.
The question is how many homeowners like Zara will have their homes and health damaged before the situation is addressed. “It’s not that we don’t know that this is happening,” Listiburek says. “It’s that it’s not painful enough yet.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.