You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
To do it right, you’re going to need a building science pro.
When Zara Bode, a musician from Brooklyn, New York, first walked into the old seven-bedroom Victorian in downtown Brattleboro, Vermont, it just felt right. Her husband, also a traveling musician, had grown up nearby. “You walk in this house and you’re like, oh, there’s a good vibe,” she told me. Since the 1890s, when it was built, it had been a community health center and a food co-op, before being lovingly restored by the older woman who sold it to Bode and her husband in January of 2020. Bode hoped to make it their forever home, a place for friends and family to gather.
Within a month of moving in, she and her husband both lost their incomes in the pandemic. Then they made a brutal discovery: the house was ruinously expensive to heat.
They spent all their time huddled in the kitchen with their two young children in front of the wood burning cookstove and kept the thermostat at 65. Even so, they were running through a full tank of oil every nine days. Each delivery cost more than $1,000, adding up to twice their mortgage every month. They had to ask for government emergency assistance.
Bode started asking around to other families, who told her about a state-funded program that gives out 0% weatherization loans with deferred repayment to low-income families. She got quotes from two different reputable companies, each of which proposed using polyurethane spray foam insulation in the large basement. The buzz in the community was that spray foam is a miracle product — so incredibly insulating that it would cut their heating oil needs down by two-thirds or or more. But Bode was protective of the old Victorian. “I knew it was lucky for us to get this house in the first place. We don’t have the money to make mistakes,” she says.
Without any outside expert to turn to, desperate for relief, and grateful for Vermont’s robust social safety net, she went for it.
She would come to regret it.
To hit its climate goals, the U.S. is going to have to upgrade its old housing stock. Residential energy use accounts for about 20% of U.S. carbon emissions, and the lion’s share of that energy is used to heat and cool homes. At the same time, low-income families are struggling more than ever to shoulder the financial burden of doing that. In 2023, the number of American families needing assistance jumped by 1.3 million to over 6 million.
The Inflation Reduction Act is aiming to tackle these twin crises, with a tax credit covering 30% of the cost of insulation and air-sealing materials, up to $1,200 annually per household. So far only New York has an active IRA-funded home rebate program, but more states have applied to start handing out funds to homeowners over the next year, which should also help shield Americans from the health effects of extreme temperatures.
The problem is, insulating an old home is a delicate and complex process. Improper installation can lead to mold, dry rot in your home’s framing and roof, and poor indoor air quality that can make you sick.
“It’s potentially a huge problem,” Francis Offerman, a.k.a. Bud, an industrial hygienist who does indoor air quality testing for homeowners (and lawyers) who suspect a house or apartment is making its inhabitants ill, told me. “Especially if your mindset is, we’re going to just spray foam the home, and that’s it.”
Bode reached out to me last year after she read my viral story for VT Digger, which raised the alarm about the risks of spray foam insulation in particular. (Though experts say any insulation done badly can cause problems.) She and her family had vacated their Victorian for a few days in early 2021 while the basement was spray foam insulated. When they moved back in, Bode was struck by the bad paint smell. That eventually went away, and oil deliveries dropped from every nine days to every three weeks.
But then she realized the basement, which used to be bone dry, was now damp all the time. She bought two industrial dehumidifiers that run constantly, and still the smell of mildew wafts up through the floorboards. Bode has allergies to mold and mildew and worries the bad air quality could affect her kids, who also have allergies and asthma. She’s had to move all her furniture and art out of the basement lest it get damaged.
When she saw my article, she felt a mix of emotions. On the one hand, after having her concerns dismissed by the insulation company, she finally felt validated. “That was the first time that I had heard about air exchangers and other things I can’t afford,” Bode told me about reading my article. But she wondered, “Did I ruin a house that’s been standing strong for 140 years?”
The kind of person that could have advised Bode on how to safely insulate her historic home would be someone trained in building science — that is, someone educated in the physics of buildings, who can identify moisture issues and air leaks, recommend appropriate materials and HVAC solutions, and give you a step-by-step plan for implementing them so your home stays healthy and whole.
Unfortunately, many insulation companies, architects, and contractors have either never heard of or are actively hostile to these concepts, which they see as expensive, unnecessary, overly complicated, and (in the case of many spray foam contractors) an impediment to making the sale.
“In the grand scheme of things, building science is a relatively new field,” Eric Werling, who recently retired after 30 years of directing the U.S. Department of Energy’s Building America program to run his own consulting business, told me. “People have studied structural engineering for thousands of years. But air-tightening buildings is a relatively new phenomenon.”
Up until the 1970s, people in the U.S. didn’t think much about insulation. Then the energy crisis struck, and oil shortages caused prices to skyrocket. President Jimmy Carter told Americans to put on a sweater and turn down the thermostat. Letting all that expensive energy flow outside suddenly seemed like a waste of money.
The Department of Energy launched its Weatherization Assistance Program in 1976 for low-income families and created efficiency standards for commercial buildings that relied on the new, synthetic materials that had emerged after WWII. The problem was, as homes and commercial buildings were sealed, a lot of people got sick. The most high profile cases were cancer from chronic radon exposure or quiet but shocking deaths from carbon monoxide poisoning. But there also emerged the autoimmune-adjacent condition called Sick Building Syndrome, a constellation of symptoms related to breathing in VOCs from furniture, carpeting, pesticides, and cleaning products circulating inside a tight building.
“The Department of Energy… screwed it up a lot at the very beginning,” Joe Lstiburek, a longtime building science consultant, told me. But the DOE started training its weatherization crews, establishing standards for proper insulation, and providing additional funding for safety measures, including mechanical ventilation. “America became a world leader at figuring out how not to rot houses and how not to kill people,” Lstiburek said.
Today, indoor air quality in the workplace has dramatically improved. Aspects of building science have been codified in residential homes as well, with some states requiring that new builds with a tight air seal include mechanical ventilation. But nobody I talked to could point to similar requirements for an existing home that has been retrofitted with insulation. And when I asked Lstiburek if low-income renters and homeowners have access to building science information and advice, he said, “No, they do not.”
According to Werling, there are still probably fewer than a thousand building science experts, and many are eyeing retirement. “Their teachings have impacted thousands –– probably hundreds of thousands –– of people in the construction industry.” He points to New York and Wisconsin as two states that have had robust contractor training programs for the longest. But he admits that’s still a small percentage of the millions of people involved in construction in the U.S.
“There are just too many companies with people who don’t know enough about the issues regarding moisture doing whatever they want and leaving the homeowner with the bill,” Chris West, a Vermont-based certified consultant and trainer for Passive House, a design standard for ultra-low-energy-consumption homes, told me. “Often these companies have some kind of caveat in their contract that makes the owner responsible for any future issues.”
To make things worse, our homes are more delicate today. New building construction has largely switched from rot- and mold-resistant materials such as hardwood and plaster to cheaper manufactured mold-prone materials like plywood and drywall.
“Green” or “eco” home programs that advise homeowners focus solely on energy efficiency, and tightened energy codes are requiring ever more robust insulation without taking into account existing moisture problems (such as a wet basement or unventilated bathroom), which are not rare. NIOSH estimates about half of all homes have some sort of moisture or mold issue. Residential contractors, architects, and developers, meanwhile, are largely free to ignore building science concepts and go about their business doing things the way they’ve always been done. And there doesn’t seem to be a good plan in place to upskill contractors for this next weatherization push or protect consumers from shoddy workmanship.
“There isn’t an educational track that’s indoor air quality in universities or colleges,” Offerman told me. “I’m 71 now. I’m gonna retire eventually, and where are the replacements?”
I’ve talked to several homeowners who have been burned by bad insulation jobs, and every one expressed dismay that contractors aren’t required to at least share the potential risks or downsides of getting your home weatherized. For example, homeowners may have to install mechanical ventilation at an extra cost of a few thousand dollars, and spray foam, as opposed to traditional batting insulation, is permanent and all but impossible to remediate or take out.
This information is largely hidden from consumers, even savvy ones like me. I was pitched spray foam by an energy auditor for my own old farmhouse, and I had to go out and interview a half dozen experts for an article and pay $1,000 to West to drive two hours down to audit our house (again) and come up with an alternative plan I was comfortable with.
Werling doesn’t want homeowners to be scared away from weatherizing their homes. “In the vast majority of cases, homeowners are better off when they insulate and air-seal their homes,” he said, “but it’s important to be aware that the house is a complicated system of parts. Hire the right contractor to help avoid potentially costly problems down the road.” He points to the Home Improvement Expert section of the Building America Solution Center from the U.S. Department of Energy, which has detailed checklists you can go over with your contractor to ensure the work is done properly. West suggests homeowners find a certified consultant at Passive House Institute US.
The building science experts I spoke to suggested things like an educational program for consumers so they know to ask about ventilation, third party inspections before and after weatherization projects with the results entered into the public record, pre-sale energy audits, and mandatory building science training for contractors and their crews. Offerman said weatherization programs should hold installers accountable for insulating and ventilating according to the latest building science standards as a condition of receiving funds.
The question is how many homeowners like Zara will have their homes and health damaged before the situation is addressed. “It’s not that we don’t know that this is happening,” Listiburek says. “It’s that it’s not painful enough yet.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It would have delivered a gargantuan 6.2 gigawatts of power.
The Bureau of Land Management says the largest solar project in Nevada has been canceled amidst the Trump administration’s federal permitting freeze.
Esmeralda 7 was supposed to produce a gargantuan 6.2 gigawatts of power – equal to nearly all the power supplied to southern Nevada by the state’s primary public utility. It would do so with a sprawling web of solar panels and batteries across the western Nevada desert. Backed by NextEra Energy, Invenergy, ConnectGen and other renewables developers, the project was moving forward at a relatively smooth pace under the Biden administration, albeit with significant concerns raised by environmentalists about its impacts on wildlife and fauna. And Esmeralda 7 even received a rare procedural win in the early days of the Trump administration when the Bureau of Land Management released the draft environmental impact statement for the project.
When Esmeralda 7’s environmental review was released, BLM said the record of decision would arrive in July. But that never happened. Instead, Donald Trump issued an executive order as part of a deal with conservative hardliners in Congress to pass his tax megabill, which also effectively repealed the Inflation Reduction Act’s renewable electricity tax credits. This led to subsequent actions by Interior Secretary Doug Burgum to freeze all federal permitting decisions for solar energy.
Flash forward to today, when BLM quietly updated its website for Esmeralda 7 permitting to explicitly say the project’s status is “cancelled.” Normally when the agency says this, it means developers pulled the plug.
I’ve reached out to some of the companies behind Esmeralda 7 but was unable to reach them in time for publication. If I hear from them confirming the project is canceled – or that BLM is wrong in some way – I will let you know.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.