You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A little insulation goes a long way toward decarbonizing.

When you think about ways to decarbonize, your mind will likely go straight to shiny new machines — an electric vehicle, solar panels, or an induction stove, perhaps. But let’s not forget the low-tech, low-hanging fruit: your home itself.
Adding insulation, fixing any gaps, cracks or leaks where air can get out, and perhaps installing energy efficient windows and doors are the necessary first steps to decarbonizing at home — though you may also want to consider a light-colored “cool roof,” which reflects sunlight to keep the home comfortable, and electric panel and wiring upgrades to support broader electrification efforts.
Getting started on one or multiple of these retrofits can be daunting — there’s lingo to be learned, audits to be performed, and various incentives to navigate. Luckily, Heatmap is here to help.
Cora Wyent is the Director of Research at Rewiring America, where she conducts research and analysis on how to rapidly electrify the entire economy.
Joseph Lstiburek is the founding principal at the Building Science Corporation, a consulting firm focused on designing and constructing energy efficient, durable, and economic buildings.
Lucy de Barbaro is the founder and director of Energy Efficiency Empowerment, a Pittsburgh-based organization that seeks to transform the home renovation process and help low and middle-income homeowners make energy efficiency improvements.
Definitively, yes! When people hear the word “insulation” they often think of how it can protect them from the cold. And while it certainly does do that, insulation’s overall role is to slow the transfer of heat both out of your home when it’s chilly and into your home when it’s hot. That means you won’t need to use your air conditioning as much during those scorching summer days or your furnace as much when the temperatures drop.
Quite possibly! The most definitive way to know if your home could be improved by weatherization is by getting a home energy audit —- more on that below. While a specific level of insulation is required for all newly constructed homes, these codes and standards are updated frequently. So if you’re feeling uncomfortable in your living space, or if you think your heating and cooling bills are unusually high, it’s definitely worth seeing what an expert thinks. And if you’re interested in getting electric appliances like a heat pump or induction stove, some wiring upgrades will almost certainly be necessary.
Energy efficient appliances like electric heat pumps or induction stoves are fantastic ways to decarbonize your life, but serve a fundamentally different purpose than most of the upgrades that we’re going to talk about here. When you get better air sealing, insulation, windows, or doors, what you’re doing is essentially regulating the temperature of your home, making you less reliant on energy intensive heating and cooling systems. And while this can certainly lead to savings on your energy bill and a positive impact on the environment at large, these upgrades will also allow you to simply live more comfortably.
This is the starting point for making informed decisions about any energy efficiency upgrades that you’re considering. During a home energy audit, a certified auditor (sometimes also referred to as an energy assessor or rater or verifier) will inspect your home to identify both the highest-impact and most cost-effective upgrades you can make, including how much you stand to save on your energy bills by doing so.
Wyent told me checking with your local utility is a good place to start, as many offer low-cost audits. Even if your utility doesn’t do energy assessments, they may be able to point you in the direction of local auditors or state-level resources and directories. The Residential Energy Services Network also provides a directory of certified assessors searchable by location, as does the Department of Energy’s Energy Score program, though neither list is comprehensive.
Audits typically cost between $200 and $700 depending on your home’s location, size, and type, as well as the scope of the audit. Homeowners can claim 30% of the cost of their audit on their federal taxes, up to $150. To be eligible, make sure you find a certified home energy auditor. The DOE provides a list of recognized certification programs.
Important: Make sure the auditor performs both a blower door test and a thermographic inspection. These diagnostic tools are key to determining where air leakage and heat loss/gain is occurring.
Your energy audit isn’t the only thing eligible for a credit. The 25C Energy Efficient Home Improvement Credit allows homeowners to claim up to 30% of the cost of a variety of home upgrades, up to a combined total of $1,200 per year. This covers upgrading your insulation, windows, doors, skylights, electrical wiring, and/or electrical panel. Getting an energy audit is also included in this category.
While $1,200 is the max amount you can claim for all retrofits combined, certain renovations come with their own specific limitations. Let’s break it down:
State and local incentives:
Depending on where you live, there may be additional state and local incentives, and we suggest asking your contractor what you are eligible for. But since incentive programs change frequently, it’s a good idea to do your own research too. Get acquainted with Energy Star, a joint program run by the Environmental Protection Agency and the DOE which provides information on energy efficient products, practices, and standards. On Energy Star’s website, you can search by zip code for utility rebates that can help you save on insulation, windows, and electrical work.
“Starting by looking at your local utility programs can be a great resource too, because utilities offer rebates or incentives for weatherizing your home or installing a new roof,” said Wyent.
Everyone wants to minimize the number of times they break open or drill into their walls. To that end, it’s useful to plan out all the upgrades you might want to get done over the next five to 10 years to figure out where efficiency might fit in.
Some primary examples: Installing appliances like a heat pump, induction stove, or Level 2 EV charger (all of which you can read more about in our other guides) often require electrical upgrades. Even if you don’t plan to get any of these new appliances now, pre-wiring your home to prepare for their installation (with the exception of a heat pump — see our heat pump guide for more info on that) will save you money later on.
De Barbaro also notes that if you’re planning to repaint your walls anytime soon, this would also be a convenient time to add insulation, as that involves drilling holes which then need to be patched and repainted anyway. Likewise, if you were already planning to replace your home’s siding, this would be a natural time to insulate. Finally, if you’re planning to get a heat pump in the coming years, getting better insulation now will ensure this system is maximally effective.
Conversely, if you’re cash-strapped, spreading out electrical and weatherization upgrades over the course of a few years allows you to claim the full $1,200 tax credit every year. Whether those tax savings are enough to cover the added contractor time and clean-up costs, though, will depend on the particulars of your situation.
“Come in with a plan and talk to the contractor about everything that you want to do in the future, not just immediately,” said Wyent.
Unlike solar installers, which are often associated with large regional and national companies, the world of weatherization and electrical upgrades is often much more localized, meaning you’ll need to do a bit of legwork to verify that the contractors and installers you come across are reliable.
Wyent told me she typically starts by asking friends, family, and neighbors for references, as well as turning to Google and Yelp reviews. Depending on where you live and what type of work you want done, your local utility may also offer incentives for weatherization and electrification upgrades, and can possibly provide a list of prescreened contractors who are licensed and insured for this type of work.
These questions will help you vet contractors and gain a better understanding of their process regardless of the type of renovation you’re pursuing.
Common wisdom says you should always get three quotes. But that doesn’t mean you should automatically choose the cheapest option. Lstiburek says the old adage applies: “If it sounds too good to be true, it's probably too good to be true.” Be sure that your contractors and installers are properly licensed and insured and read the fine print of your contract. Beyond this, how to find qualified professionals and what to ask largely depends on the type of upgrade you are pursuing. So let’s break it down, starting with the biggest bang for your buck.
Air sealing and insulating your home is usually the number one way to increase its energy efficiency. Energy Star says nine out of 10 homes are underinsulated, and many also have significant air leaks. In general, homes lose more heating and cooling energy through walls and attics than through windows and doors, so air sealing and adding insulation in key areas should be your first priority.
“People don't realize how collectively, small holes everywhere add up. So on average here in Pennsylvania, typically those holes would add up to the surface of three sheets of paper, continuously open to the outdoors,” said de Barbaro.
Determining where air is escaping is the purpose of the blower door test and the thermographic inspection, so after your energy audit you should have a good idea of where to begin with these retrofits. This guide from the Department of Energy is a great resource on all the places in a home one might consider insulating.
Choosing an insulation type:
Every home is different, and the type of insulation you choose will depend on a number of factors including where you’re insulating, whether that area is finished or unfinished, what R-Value is right for your climate, and your budget. You can check out this comprehensive list of different insulation types to learn about their respective advantages and use cases. But when it comes to attic rafters and exterior walls, De Barbaro said that one option rises above the rest.
“The magic word here is dense-packed cellulose insulation!” De Barbaro told me.
This type of insulation (which falls under the “loose fill and blown-in” category) is made from recycled paper products, meaning it has very low embodied carbon emissions. It’s also cheap and effective. For exterior walls and attic rafters, be sure to avoid loose-fill cellulose, as that can settle and become less effective over time — although for attic floors, loose-fill works well. Both are installed by drilling holes into the wall or floor space and blowing the insulation in under pressure.
We recommend discussing all of these options with your contractor, but here are the other materials you’re most likely to come across:
In addition to asking friends, family, and your local utility for contractor recommendations, Energy Star specifically recommends these additional resources where you can find licensed and insured contractors for insulation work.
While air sealing and insulation should definitely be number one on your weatherization checklist, plenty of heat gets lost through windows, doors, and skylights, as well. Single pane glass is a particularly poor insulator, and while fewer houses these days have it, upgrading to double or triple pane windows or skylights can be a big energy saver. Likewise, steel or fiberglass doors are much better insulators than traditional wooden doors.
But be warned: These can be pricey upgrades. The cost of installing windows alone ranges from hundreds of dollars up to $1,500 per window, and many homes have ten or more. It’s unlikely you’ll fully recoup the outlay through your energy savings, so before going about these retrofits, be sure that you’ve taken care of the easy stuff first.
Once you’ve done your research, it’s time to schedule a consultation with an installer, who can help you refine your project needs, discuss design and installation options, and provide you with a quote.
“So if you pick a Marvin window, make sure that you have a Marvin certified installer in your location, installing the Marvin window according to the Marvin instructions.” said Lstiburek.
Insulating your attic floor or your roof rafters is the best way to ensure that your home is sealed off from the elements. But if you live in a hot climate and need a new roof anyway (most last 25 to 50 years), then you might consider getting a cool roof, which can be made from a variety of materials and installed on almost any slope. However, they won’t lead to energy efficiencies in all geographies, so be sure to do your research beforehand!
Last but certainly not least is a retrofit that’s a little different from the rest. Unlike getting insulation, new windows, or a new roof, upgrading your wiring or electric panel doesn’t lead to greater energy efficiency by regulating the temperature of your home. What it does instead is enable greater energy efficiency by making it possible to operate an increasing number of electrified appliances and devices in your house.
For example, getting an electric or induction stove or dryer, a standard heat pump, a heat pump water heater, or an electric vehicle charger will require that you add new electric circuits to support these devices. And as these new loads add up, you may need to install a larger electric panel to support it all.
After sourcing electrician recommendations from family and friends, a good place to turn is Rewiring America’s contractor directory network. (Rewiring America is also a sponsor of Decarbonize Your Life.)Networks in your area can then provide you with a list of qualified electricians.
“Most people are really only using somewhere around 40% of what their current panels space. So you can actually add a fair amount of new circuits to your existing panel and upgrade your wiring while not having to upgrade your panel at all,” Wyent said.
Once you have three quotes in hand, all that’s left to do is evaluate your options, choose a contractor or installer, and sign a contract. Cost will likely be a major factor in the decision, but you’ll also want to ensure that the cheapest quote doesn’t mean corners will be cut. Here’s what to look out for.
Pay close attention to warranties. This applies both to the warranty for the work being performed and to the warranties for the products themselves. If an installation job or a product is well priced but comes with a short warranty, this should give you pause.
Avoid “same day signing specials.” If you’re being rushed into signing a contract, this is also a bad sign. Be sure to read the fine print — most cost estimates should be good for a few weeks at minimum.
Get specific. Your quotes should specify the type of work being performed, the scope of the work, cost (broken down by materials, labor, permits, and other expenses), payment method, and a tentative timeline for completion. A quote is much less formal than a contract, so if some of this information isn’t provided up front, don’t hesitate to ask for clarification so that you can make apples-to-apples comparisons between different contractors.
When you get a contract in hand, double check that:
Then it’s time to sign, sit back, and enjoy the soothing sounds of hammering, drilling, insulation blowing, and wire tinkering, content in knowing that you’re decarbonizing your home down to its very bones!
Now that you’re living comfortably in a maximally energy efficient home, you’re probably wondering when you’ll start seeing all those incentives you researched pay off. First off, know that you must wait until all renovations are complete and paid for to claim your federal tax credit. That means that even if you purchased new windows this year, if you have them installed in 2025, you’ll file for a tax credit with your 2025 return. Here’s how to go about it.
For state and local incentives, check the website for your local utility as well your local and state government and energy office to see what documentation is required. When in doubt, keep all of your records and receipts!
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Deep Fission says that building small reactors underground is both safer and cheaper. Others have their doubts.
In 1981, two years after the accident at Three Mile Island sent fears over the potential risks of atomic energy skyrocketing, Westinghouse looked into what it would take to build a reactor 2,100 feet underground, insulating its radioactive material in an envelope of dirt. The United States’ leading reactor developer wasn’t responsible for the plant that partially melted down in Pennsylvania, but the company was grappling with new regulations that came as a result of the incident. The concept went nowhere.
More than a decade later, the esteemed nuclear physicist Edward Teller resurfaced the idea in a 1995 paper that once again attracted little actual interest from the industry — that is, until 2006, when Lowell Wood, a physicist at the Lawrence Livermore National Laboratory, proposed building an underground reactor to Bill Gates, who considered but ultimately abandoned the design at his nuclear startup, TerraPower.
Now, at last, one company is working to make buried reactors a reality.
Deep Fission proposes digging boreholes 30 inches in diameter and about a mile deep to house each of its 15-megawatt reactors. And it’s making progress. In August, the Department of Energy selected Deep Fission as one of the 10 companies enrolled in the agency’s new reactor pilot program, meant to help next-generation startups split their first atoms by July. In September, the company announced a $30 million reverse merger deal with a blank check firm to make its stock market debut on the lesser-known exchange OTCQB. Last month, Deep Fission chose an industrial park in a rural stretch of southeastern Kansas as the site of its first power plant.
Based in Berkeley, California, the one-time hub of the West Coast’s fading anti-nuclear movement, the company says its design is meant to save money on above-ground infrastructure by letting geology do the work to add “layers of natural containment” to “enhance safety.” By eliminating much of that expensive concrete and steel dome that encases the reactor on the surface, the startup estimates “that our approach removes up to 80% of the construction cost, one of the biggest barriers for nuclear, and enables operation within six months of breaking ground.”
“The primary benefit of placing a reactor a mile deep is cost and speed,” Chloe Frader, Deep Fission’s vice president of strategic affairs, told me. “By using the natural pressure and containment of the Earth, we eliminate the need for the massive, above-ground structures that make traditional nuclear expensive and slow to build.”
“Nuclear power is already the safest energy source in the world. Period,” she said. “Our underground design doesn’t exist because nuclear is unsafe, it exists because we can make something that is already extremely safe even safer, simpler, and more affordable.”
But gaining government recognition, going public, and picking a location for a first power plant may prove the easy part. Convincing others in the industry that its concept is a radical plan to cut construction costs rather than allay the public’s often-outsize fear of a meltdown has turned out to be difficult, to say nothing of what actually building its reactors will entail.
Despite the company’s recent progress, I struggled to find anyone who didn’t have a financial stake in Deep Fission willing to make the case for its buried reactors.
Deep Fission is “solving a problem that doesn't actually exist,” Seth Grae, the chief executive of the nuclear fuel company Lightbridge, told me. In the nearly seven decades since fission started producing commercial electrons on the U.S. grid, no confirmed death has ever come from radiation at a nuclear power station.
“You’re trying to solve a political problem that has literally never hurt anyone in the entire history of our country since this industry started,” he said. “You’re also making your reactors more expensive. In nuclear, as in a lot of other projects, when you build tall or dig deep or lift big and heavy, those steps make the projects much more expensive.”
Frader told me that subterranean rock structures would serve “as natural containment, which also enhances safety.” That’s true to some extent. Making use of existing formations “could simplify surface infrastructure and streamline construction,” Leslie Dewan, a nuclear engineer who previously led a next-generation small modular reactor startup, told IEEE Spectrum.
If everything pans out, that could justify Deep Fission’s estimate that its levelized cost of electricity — not the most dependable metric, but one frequently used by solar and wind advocates — would be between $50 and $70 per megawatt-hour, lower than other SMR developers’ projections. But that’s only if a lot of things go right.
“A design that relies on the surrounding geology for safety and containment needs to demonstrate a deep understanding of subsurface behavior, including the stability of the rock formations, groundwater movement, heat transfer, and long-term site stability,” Dewan said. “There are also operational considerations around monitoring, access, and decommissioning. But none of these are necessarily showstoppers: They’re all areas that can be addressed through rigorous engineering and thoughtful planning.”
As anyone in the geothermal industry can tell you, digging a borehole costs a lot of money. Drilling equipment comes at a high price. Underground geology complicates a route going down one mile straight. And not every hole that’s started ends up panning out, meaning the process must be repeated over and over again.
For Deep Fission, drilling lots of holes is part of the process. Given the size of its reactor, to reach a gigawatt — the output of one of Westinghouse’s flagship AP1000s, the only new type of commercial reactor successfully built from scratch in the U.S. this century — Deep Fission would need to build 67 of its own microreactors. That’s a lot of digging, considering that the diameters of the company’s boreholes are on average nearly three times wider than those drilled for harvesting natural gas or geothermal.
The company isn’t just distinguished by its unique approach. Deep Fission has a sister company, Deep Isolation, that proposes burying spent nuclear fuel in boreholes. In April, the two startups officially partnered in a deal that “enables Deep Fission to offer an end-to-end solution that includes both energy generation and long-term waste management.”
In theory, that combination could offer the company a greater social license among environmental skeptics who take issue with the waste generated from a nuclear plant.
In 1982, Congress passed a landmark law making the federal government responsible for the disposal of all spent fuel and high-level radioactive waste in the country. The plan centered on building a giant repository to permanently entomb the material where it could remain undisturbed for thousands of years. The law designated Yucca Mountain, a rural site in southwestern Nevada near the California border, as the exclusive location for the debut repository.
Construction took years to start. After initial work got underway during the Bush administration, Obama took office and promptly slashed all funding for the effort, which was opposed by then-Senate Majority Leader Harry Reid of Nevada; the nonpartisan Government Accountability Office clocked the move as a purely political decision. Regardless of the motivation, the cancellation threw the U.S. waste disposal strategy into limbo because the law requires the federal government to complete Yucca Mountain before moving on to other potential storage sites. Until that law changes, the U.S. effort to find a permanent solution to nuclear waste remains in limbo, with virtually all the spent fuel accumulated over the years kept in intermediate storage vessels on site at power plants.
Finland finished work on the world’s first such repository in 2024. Sweden and Canada are considering similar facilities. But in the U.S., the industry is moving beyond seeing its spent fuel as waste, as more companies look to start up a recycling industry akin to those in Russia, Japan, and France to reprocess old uranium into new pellets for new reactors. President Donald Trump has backed the effort. The energy still stored in nuclear waste just in this country is sufficient to power the U.S. for more than a century.
Even if Americans want an answer to the nuclear waste problem, there isn’t much evidence to suggest they want to see the material stored near their homes. New Mexico, for example, passed a law barring construction of an intermediate storage site in 2023. Texas attempted to do the same, but the Supreme Court found the state’s legislation to be in violation of the federal jurisdiction over waste.
While Deep Fission’s reactors would be “so far removed from the biosphere” that the company seems to think the NRC will just “hand out licenses and the public won’t worry,” said Nick Touran, a veteran engineer whose consultancy, What Is Nuclear, catalogs reactor designs and documents from the industry’s history.
“The assumption that it’ll be easy and cheap to site and license this kind of facility is going to be found to be mistaken,” he told me.
The problem with nuclear power isn’t the technology, Brett Rampal, a nuclear expert at the consultancy Veriten, told me. “Nuclear has not been suffering from a technological issue. The technology works great. People do amazing things with it, from curing cancer to all kinds of almost magical energy production,” he told me. “What we need is business models and deployment models.”
Digging a 30-inch borehole a mile deep would be expensive enough, but Rampal also pointed out that lining those shafts with nuclear-grade steel and equipping them with cables would likely pencil out to a higher price than building an AP1000 — but with one one-hundredth of the power output.
Deep Fission insists that isn’t the case, and that the natural geology “removes the need for complex, costly pressure vessels and large engineered structures” on the surface.
“We still use steel and engineered components where necessary, but the total material requirements are a fraction of those used in a traditional large-scale plant,” Frader said.
Ultimately, burying reactors is about quieting concerns that should be debunked head on, Emmet Penney, a historian of the industry and a senior fellow at the Foundation for American Innovation, a right-leaning think tank that advocates building more reactors in the U.S., told me.
“Investors need to wake up and realize that nuclear is one of the safest power sources on the planet,” Penney said. “Otherwise, goofy companies will continue to snow them with slick slide decks about solving non-issues.”
On energy efficiency rules, Chinese nuclear, and Japan’s first offshore wind
Current conditions: Warm air headed northward up the East Coast is set to collide with cold air headed southward over the Great Lakes and Northeast, bringing snowfall followed by higher temperatures later in the week • A cold front is stirring up a dense fog in northwest India • Unusually frigid Arctic air in Europe is causing temperatures across northwest Africa to plunge to double-digit degrees below seasonal norms, with Algiers at just over 50 degrees Fahrenheit this week.

Oil prices largely fell throughout 2025, capping off December at their lowest level all year. Spot market prices for Brent crude, the leading global benchmark for oil, dropped to $63 per barrel last month. The reason, according to the latest analysis of the full year by the Energy Information Administration, is oversupply in the market. China’s push to fill its storage tanks kept prices from declining further. Israel’s June 13 strikes on Iran and attacks on oil infrastructure between Russia and Ukraine briefly raised prices throughout the year. But the year-end average price still came in at $69 per barrel, the lowest since 2020, even when adjusted for inflation.

The price drop bodes poorly for reviving Venezuela’s oil industry in the wake of the U.S. raid on Caracas and arrest of the South American country’s President Nicolás Maduro. At such low levels, investments in new infrastructure are difficult to justify. “This is a moment where there’s oversupply,” oil analyst Rory Johnston told my colleague Matthew Zeitlin yesterday. “Prices are down. It’s not the moment that you’re like, I’m going to go on a lark and invest in Venezuela.”
The Energy Department granted a Texas company known for recycling defunct tools from oil and gas drilling an $11.5 million grant to fund an expansion of its existing facility in a rural county between San Antonio and Dallas. The company, Amermin, said the funding will allow it to increase its output of tungsten carbide by 300%, “reducing our reliance on foreign nations like China, which produces 83%” of the world’s supply of the metal used in all kinds of defense, energy, and hardware applications. “Our country cannot afford to rely on our adversaries for the resources that power our energy industry,” Representative August Pfluger, a Texas Republican, said in a statement. “This investment strengthens our district’s role in American energy leadership while providing good paying jobs to Texas families.”
That wasn’t the agency’s only big funding announcement. The Energy Department gave out $2.7 billion in contracts for enriched uranium, with $900 million each to Maryland-based Centrus Energy, the French producer Orano, and the California-headquartered General Matter. “President Trump is catalyzing a resurgence in the nation’s nuclear energy sector to strengthen American security and prosperity,” Secretary of Energy Chris Wright said in a press release. “Today’s awards show that this Administration is committed to restoring a secure domestic nuclear fuel supply chain capable of producing the nuclear fuels needed to power the reactors of today and the advanced reactors of tomorrow.”
Low-income households in the United States pay roughly 30% more for energy per square foot than households who haven’t faced trouble paying for electricity and heat in the past, federal data shows. Part of the problem is that the national efficiency standards for one of the most affordable types of housing in the nation, manufactured homes, haven’t been updated since 1994. Congress finally passed a law in 2007 directing the Department of Energy to raise standards for insulation, and in 2022, the Biden administration proposed new rules to increase insulation and reduce air leaks. But the regulations had yet to take effect when President Donald Trump returned to office last year. Now the House of Representatives is prepared to vote on legislation to nullify the rules outright, preserving the standards set more than three decades ago. The House Committee on Rules is set to vote on advancing the bill as early as Tuesday night, with a full floor vote likely later in the week. “You’re just locking in higher bills for years to come if you give manufacturers this green light to build the homes with minimal insulation,” Mark Kresowik, senior policy director of the American Council for an Energy-Efficient Economy, told me.
Sign up to receive Heatmap AM in your inbox every morning:
The newest reactor at the Zhangzhou nuclear station in Fujian Province has officially started up commercial operation as China’s buildout of new atomic power infrastructure picks up pace this year. The 1,136-megawatt Hualong One represents China’s leading indigenous reactor design. Where once Beijing preferred the top U.S. technology for large-scale reactors, the Westinghouse AP1000, the Hualong One’s entirely domestic supply chain and design that borrows from the American standard has made China’s own model the new leader.
In a sign of just how many reactors China is building — at least 35 underway nationwide, as I noted in yesterday’s newsletter — the country started construction on two more the same week the latest Hualong One came online. World Nuclear News reported that first concrete has been poured for a pair of CAP1000 reactors, the official Chinese version of the Westinghouse AP1000, at two separate plants in southern China.
Back in October, when Japan elected Sanae Takaichi as its first female prime minister, I told you about how the arch-conservative leader of the Liberal Democratic Party planned to refocus the country’s energy plans on reviving the nuclear industry. But don’t count out offshore wind. Unlike Europe’s North Sea or the American East Coast, the sharp continental drop in Japan’s ocean makes rooting giant turbines to the sea floor impossible along much of its shoreline. But the Goto Floating Wind Farm — employing floating technology under consideration on the U.S. West Coast, too — announced the start of commercial operations this week, pumping nearly 17 megawatts of power onto the Japanese grid. Japanese officials last year raised the country’s goal for installed capacity of offshore wind to 10 gigawatts by 2030 and 45 gigawatts by 2040, Power magazine noted, so the industry still has a long way to go.
Beavers may be the trick to heal nature’s burn scars after a wildfire. A team of scientists at the U.S. Forest Service and Colorado State University are building fake beaver dams in scorched areas to study how wetlands created by the dams impact the restoration of the ecosystem and water quality after a blaze. “It’s kind of a brave new world for us with this type of work,” Tim Fegel, a doctoral candidate at Colorado State, who led the research, said in a press release.
Rob talks about the removal of Venezuela’s Nicolás Maduro with Commodity Context’s Rory Johnston.
Over the weekend, the U.S. military entered Venezuela and captured its president, Nicolás Maduro, and his wife. Maduro will now face drug and gun charges in New York, and some members of the Trump administration have described the operation as a law enforcement mission.
President Donald Trump has taken a different tack. He has justified the operation by asserting that America is going to “take over” Venezuela’s oil reserves, even suggesting that oil companies might foot the bill for the broader occupation and rebuilding effort. Trump officials have told oil companies that the U.S. might not help them recover lost assets unless they fund the American effort now, according to Politico.
Such a move seems openly imperialistic, ill-advised, and unethical — to say the least. But is it even possible? On this week’s episode of Shift Key, Rob talks to Rory Johnston, a Toronto-based oil markets analyst and the founder of Commodity Context. They discuss the current status of the Venezuelan oil industry, what a rebuilding effort would cost, and whether a reopened Venezuelan oil industry could change U.S. energy politics — or even, as some fear, bring about a new age of cheap fossil fuels.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: First of all, does Venezuela have the world’s largest hydrocarbon reserves — like, proven hydrocarbon reserves? And number two, let’s say that Trump has made some backdoor deal with the existing regime, that these existing issues are ironed ou to actually use those reserves. What kind of investment are we talking about on that end?
Rory Johnston: The mucky answer to this largest reserve question is, there’s lots of debate. I will say there’s a reasonable claim that at one point Venezuela — Venezuela has a lot of oil. Let’s just say it that way: Venezuela has a lot of oil, particularly the Orinoco Belt, which, again, similar to the oil sands we’re talking about —
Meyer: This is the Orinoco flow. We’re going to call this the Orinoco flow question.
Johnston: Yeah, exactly, that. Similar to the Canadian oil sands, we’re talking about more than a trillion barrels of oil in place, the actual resource in the ground. But then from there you get to this question of what is technically recoverable. Then from there, what is economically recoverable? The explosion in, again, both Venezuelan and Canadian reserve estimates occurred during that massive boom in oil prices in the mid-2000s. And that created the justification for booking those as reserves rather than just resources.
So I think that there is ample — in the same way, like, Russia and the United States don’t actually have super impressive-looking reserves on paper, but they do a lot with them, and I think in actuality that matters a lot more than the amount of technical reserves you have in the ground. Because as we’ve seen, Venezuela hasn’t been able to do much with those reserves.
So in order to, how to actually get that operating, this is where we get back to the — we’re talking tens, hundreds of billions of dollars, and a lot of time. And these companies are not going to do that without seeing a track record of whatever government replaces the current. The current vice president, his acting president — which I should also note, vice president and oil minister, which I think is particularly relevant here — so I think there’s lots that needs to happen. But companies are not going to trip over themselves to expose themselves to this risk. We still don’t know what the future is going to look like for Venezuela.
Mentioned:
The 4 Things Standing Between the U.S. and Venezuela’s Oil
Trump admin sends tough private message to oil companies on Venezuela
Previously on Shift Key: The Trump Policy That Would Be Really Bad for Oil Companies
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.