You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Rob and guest host Jillian Goodman talk atomic politics with Third Way’s Josh Freed.
Over the past two months, the country’s biggest tech companies have announced a flurry of deals with advanced and conventional nuclear companies. At the same time, Democratic candidates running for federal office — including Kamala Harris and a handful of Senate candidates — have touted their support of building new nuclear power plants. Has nuclear’s moment finally arrived?
On this week’s episode of Shift Key, we have Josh Freed, the senior vice president of Third Way’s climate and energy program, discussing why nuclear might be about to boom, why Democrats are embracing nuclear, and whether a Trump administration could derail the investments. This episode of Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jillian Goodman, Heatmap’s deputy editor.
Shift Key co-host Jesse Jenkins, a professor of energy systems engineering at Princeton University, is out this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: There’s a set of conflicting facts, or slightly contradicting pieces of analysis about this that I believe can all be accommodated together, but I’m still trying to understand how they all fit together. Which is at this point, when we look at the sources of power demand growth in the U.S., as we’ve covered on Shift Key, demand for electricity in the U. S. is rising now for the first time in 20 years. It’s a big deal.
When you look at where that demand growth is coming from, very little of it — or not a ton of it — is actually coming from data centers. It’s coming from EVs, it’s coming from new factories, it’s coming from electrification, it’s coming from air conditioning, it’s coming from all these more typical sources of demand growth in the economy — lots of places, by the way, where we want demand to grow. Because part of how we’re going to transition is that we’re going to move people from combusting fossil fuels to using electricity.
The IEA also just said in a report — it’s big global wrap of energy — last week that it was not very concerned about data centers for AI driving energy scarcity because data centers ultimately are only going to use, even in a high-growth situation, they’ll only use as much electricity as desalination plants. And, yeah, these tech companies are acting as if … Microsoft is seemingly acting as if it’s ready to pay between four and five times the market cost for electricity for the next 20 years because of how much it anticipates its power needs going up.
So on the one hand, data centers are not driving electricity demand growth. On the other hand, they do seem to be driving this new set of deals. How do we work that out?
Josh Freed: Yeah, look, I think the first thing: My approach to all of these issues is the reality — having worked in the energy and climate space since 2009 — is that it is a very humbling sector. And whatever assumptions we’re operating under today are going to be proven wildly wrong in a year or two or five years. So the simplest answer is, we just don’t know. And I think that companies like Microsoft and Google and Amazon are looking at the potential need for a significant amount of clean, firm electricity in specific parts of the grid, and saying, Let’s get ahead of this and ensure that as we’re planning, we have clean electricity in the right places, built at roughly the timeframe we expect need to escalate significantly, so that we have certainty for planning purposes.
And in some cases there’s, I think, also the expectation that there is enough electricity demand growth, both domestically and in other advanced or rapidly modernizing economies, that being a partner with an advanced nuclear company or another company that is going to be able to provide a lot more electricity is a win-win for them.
This episode of Shift Key is sponsored by …
Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.
As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.
Intersolar & Energy Storage North America is the premier U.S.-based conference and trade show focused on solar, energy storage, and EV charging infrastructure. To learn more, visit intersolar.us.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On tax credit deadlines, America’s nuclear export hopes, and data center flexibility
Current conditions: Hurricane Erin’s riptides continue lashing the Atlantic Coast, bringing 15-foot waves to the eastern end of New York’s Long Island • In Colorado, the Derby fire tripled in size to more than 2,600 acres, prompting evacuations in the county north of the ski enclave of Aspen • Heavy rain in Sydney set a new 18-year record.
Trump is preparing to onshore turbines, likely shrinking their numbers. Scott Olson/Getty Images
The Trump administration launched an investigation into imported wind turbines and parts, teeing up what Bloomberg called a “potential precursor to adding more tariffs on the clean-energy components.” The Department of Commerce started a national security probe on August 13 to query whether the imports undermine domestic production and put the country at risk from foreign opponents, according to a notice posted Thursday on the agency’s website. The agency already said this week that it would include wind turbines and related parts on the list of products facing 50% steel and aluminum tariffs. As of 2023, at least 41% of wind-related equipment to the U.S. came from Mexico, Canada, and China, according to figures Bloomberg cited from the consultancy Wood Mackenzie.
Also on Thursday, the Treasury Department published an FAQ document outlining the phaseout dates for eight key energy efficiency tax credits repealed under the One Big Beautiful Bill Act. The rules all deal with zero-carbon vehicles or energy efficiency rebates for home improvements.
As Heatmap’s Emily Pontecorvo and Robinson Meyer wrote when the first tranche of data on the programs came out around this time last year, millions of Americans had already taken advantage of at least one of the credits. But the uptake was largely concentrated among households earning $100,000 per year or more.
Get Heatmap AM directly in your inbox every morning:
For years, Westinghouse has been locked in an intellectual property dispute with South Korea’s two state-owned nuclear companies, as the American atomic energy giant accused the Korea Electric Power Corporation and its subsidiary, Korea Hydro & Nuclear Power, of ripping off its reactor technology. This week, the companies brokered a settlement that would keep the Korean giants from bidding on projects in North America, Europe, Japan, the United Kingdom, and Ukraine, effectively eliminating what is arguably the United States’ most capable rival outside of Russia and China from the key markets Washington wants to dominate. That could spur a lot more bids for Westinghouse’s flagship gigawatt-sized AP1000 reactor, projects for which are already underway in Poland, Slovakia, and Ukraine. But KoreaPro reported on Thursday that South Korea is pushing back on a deal Seoul fears infringes on its sovereignty.
In Sweden, meanwhile, the U.S.-Japanese joint venture GE Vernova-Hitachi Nuclear Energy secured a new deal to build its 300-megawatt small modular reactor that the government in Stockholm explicitly pitched as a bid to strengthen its trans-Atlantic security ties. “This is the beginning of something bigger, in many ways,” Ebba Busch, Sweden’s deputy prime minister, wrote in a post on LinkedIn. “As in the NATO process, Sweden is part of a larger movement.”
The Department of Energy extended its emergency order directing the J.H. Campbell Generating Plant in Michigan to remain open past its planned retirement. Secretary of Energy Chris Wright initially ordered the 1,420-megawatt coal station to stay online three months past its May 31 shutdown date, citing risks of electricity shortages in the Midcontinent Independent System Operator, the electrical grid that runs from the Upper Midwest down to Louisiana. Starting Thursday, the latest order directs the plant’s owners to keep the station running November 19. The consultancy Grid Strategies estimated last week that if the Trump administration expands the effort to cover all 54 aging fossil fuel plants slated for closure between now and 2028, the program will cost upward of $6 billion. Last week, the Federal Energy Regulatory Commission approved a framework for the utilities that own the affected plants to recoup the costs of operating the power stations past the closure dates from ratepayers, despite surging electricity prices.
The Data Center Coalition, a leading trade association representing the burgeoning server farm industry, has endorsed adopting programs to curb electricity demand when the grid is under stress. In a filing Thursday with the North Carolina Utility Commission, the industry group said it “supports exploring well-structured, voluntary demand-response and load flexibility programs for large load customers that allocates risk appropriately, provides clear incentives and compensation, and allows customers to meet their sustainability commitments.”
Researchers at Duke University put out an influential paper in February that found the U.S. could add gigawatts of additional demand from new data centers without building out an equivalent amount of generating plants if those facilities could curtail power usage when demand was particularly high. Heatmap’s Matthew Zeitlin described the strategy as “one weird trick for getting more data centers on the grid,” boiling down the approach simply as: “Just turn them off sometimes.” When I interviewed Tyler Norris, the study’s lead author, he pitched the idea as a way “to buy us some time” to figure out exactly how much electricity the artificial intelligence boom requires before we build out a bunch of gas plants that are even more expensive than usual due to the years-long backorder of turbines.
Researchers at the University of Houston claim to have made two major breakthroughs in carbon capture technology. The first breakthrough, published in the journal Nature Communications, introduces a new electrochemical process for filtering out carbon dioxide that avoids using a membrane like traditional carbon capture technology. The second, featured on the cover of the journal ES&T Engineering, demonstrates a new vanadium-based flow battery that could be used both to capture carbon and to store renewable energy. “We need solutions, and we wanted to be part of the solution. The biggest suspect out there is CO2 emissions, so the low-hanging fruit would be to eliminate those emissions,” Mim Rahimi, a professor at the University of Houston’s Cullen College of Engineering, said in a statement. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”
A conversation with Scott Cockerham of Latham and Watkins.
This week’s conversation is with Scott Cockerham, a partner with the law firm Latham and Watkins whose expertise I sought to help me best understand the Treasury Department’s recent guidance on the federal solar and wind tax credits. We focused on something you’ve probably been thinking about a lot: how to qualify for the “start construction” part of the new tax regime, which is the primary hurdle for anyone still in the thicket of a fight with local opposition.
The following is our chat lightly edited for clarity. Enjoy.
So can you explain what we’re looking at here with the guidance and its approach to what it considers the beginning of construction?
One of the reasons for the guidance was a distinction in the final version of the bill that treated wind and solar differently for purposes of tax credit phase-outs. They landed on those types of assets being placed in service by the end of 2027, or construction having to begin within 12 months of enactment – by July 4th, 2026. But as part of the final package, the Trump administration promised the House Freedom Caucus members they would tighten up what it means to ‘start construction’ for solar and wind assets in particular.
In terms of changes, probably the biggest difference is that for projects over 1.5 megawatts of output, you can no longer use a “5% safe harbor” to qualify projects. The 5% safe harbor was a construct in prior start of construction guidance saying you could begin construction by incurring 5% of your project cost. That will no longer be available for larger projects. Residential projects and other smaller solar projects will still have that available to them. But that is probably the biggest change.
The other avenue to start construction is called the “physical work test,” which requires the commencement of physical work of a significant nature. The work can either be performed on-site or it can be performed off-site by a vendor. The new guidance largely parrotted those rules from prior guidance and in many cases transferred the concepts word-for-word. So on the physical work side, not much changed.
Significantly, there’s another aspect of these rules that say you have to continue work once you start. It’s like asking if you really ran a race if you didn’t keep going to the finish line. Helpfully, the new guidance retains an old rule saying that you’re assumed to have worked continuously if you place in service within four calendar years after the year work began. So if you begin in 2025 you have until the end of 2029 to place in service without having to prove continuous work. There had been rumors about that four-year window being shortened, so the fact that it was retained is very helpful to project pipelines.
The other major point I’d highlight is that the effective date of the new guidance is September 2. There’s still a limited window between now and then to continue to access the old rules. This also provides greater certainty for developers who attempted to start construction under the old rules after July 4, 2025. They can be confident that what they did still works assuming it was consistent with the prior guidance.
On the construction start – what kinds of projects would’ve maybe opted to use the 5% cost metric before?
Generally speaking it has mostly been distributed generation and residential solar projects. On the utility scale side it had recently tended to be projects buying domestic modules where there might have been an angle to access the domestic content tax credit bonus as well.
For larger projects, the 5% test can be quite expensive. If you’re a 200-megawatt project, 5% of your project is not nothing – that actually can be quite high. I would say probably the majority of utility scale projects in recent years had relied on the manufacturing of transformers as the primary strategy.
So now that option is not available to utility scale projects anymore?
The domestic content bonus is still available, but prior to September 2 you can procure modules for a large project and potentially both begin construction and qualify for the domestic content bonus at the same time. Beginning September 2 the module procurement wouldn’t help that same project begin construction.
Okay, so help me understand what kinds of work will developers need to do in order to pass the physical work test here?
A lot of it is market-driven by preferences from tax equity investors and tax credit buyers and their tax counsel. Over the last 8 years or so transformer manufacturing has become quite popular. I expect that to continue to be an avenue people will pursue. Another avenue we see quite often is on-site physical work, so for a wind project for example that can involve digging foundations for your wind turbines, covering them with concrete slabs, and doing work for something called string roads – roads that go between your turbines primarily for operations and maintenance. On the solar side, it would be similar kinds of on-site work: foundation work, road work, driving piles, putting things up at the site.
One of the things that is more difficult about the physical work test as opposed to the 5% test is that it is subjective. I always tell people that more work is always better. In the first instance it’s likely up to whatever your financing party thinks is enough and that’s going to be a project-specific determination, typically.
Okay, and how much will permitting be a factor in passing the physical work test?
It depends. It can certainly affect on-site work if you don’t have access to the site yet. That is obviously problematic.
But it wouldn’t prevent you from doing an off-site physical work strategy. That would involve procuring a non-inventory item like a transformer for the project. So there are still different things you can do depending on the facts.
What’s your ultimate takeaway on the Treasury guidance overall?
It certainly makes beginning construction on wind and solar more difficult, but I think the overall reaction that I and others in the market have mostly had is that the guidance came out much better than people feared. There were a lot of rumors going around about things that could have been really problematic, but for the most part, other than the 5% test option going away, the sense is that not a whole lot changed. This is a positive result on the development side.
And more of the week’s most important news around renewable energy conflicts.
1. Carroll County, Arkansas – The head of an influential national right-wing advocacy group is now targeting a wind project in Arkansas, seeking federal intervention to block something that looked like it would be built.
2. Suffolk County, New York – EPA Administrator Lee Zeldin this week endorsed efforts by activists on Long Island to oppose energy storage in their neighborhoods.
3. Multiple counties, Indiana – This has been a very bad week for renewables in the Sooner state.
4. Brunswick County, North Carolina – Duke Energy is pouring cold water on anyone still interested in developing offshore wind off the coast of North Carolina.
5. Bell County, Texas – We have a solar transmission stand-off brewing in Texas, of all places.