You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
You might even call the Energy Secretary ... Chris Wrong.

I resent, as a rule, any news story about a politician’s social media presence. The social media post is simultaneously the lowest form of political communication and, for the journalist, the lowest hanging fruit. It is too easy to sit at your laptop, read tweets, and then write about them.
But I speak for hundreds of engineers, policy wonks, and hangers-on across the world of energy and climate when I ask: What the heck is happening with Chris Wright’s Twitter account?
Chris Wright is the current Secretary of Energy; before his appointment, he was the chief executive officer of Liberty Energy, the country’s second largest fracking company. He has been by far the most publicity-seeking member of President Trump’s energy policy team. He has helped oversee the president’s somewhat contradictory goals of seeking to reduce energy costs for Americans, support domestic fossil fuel companies, get OPEC to drill more, export as much natural gas as possible, and block the construction of new large-scale transmission lines and wind farms.
His substantive policy work is the focus of many other articles on Heatmap. For now, I want to focus on his and his department’s unpredictably confused political communications.
It began with the Department of Energy on the social network X. Several weeks ago, I started to conclude that the official agency account must have at least two authors. One of these people is familiar with how federal agencies usually speak — even if they add a small Trumpian flourish:
The other enjoys capitalizing verbs and has only a vague grasp of economic history:
One could nitpick here — “planes,” in the mid-1800s? — but there is no need to do so. As time has gone on, the official Energy Department account has begun to make more meaningful errors.
On Monday, for instance, the official DOE account proclaimed: “6 gigawatts of AMERICAN NUCLEAR ENERGY added to our grid!”
Six gigawatts of new nuclear energy is a lot. It took 11 years to build two new nuclear reactors at Plant Vogtle in Georgia, and that project added only 2.2 gigawatts. But the U.S. did not really add 6 gigawatts. In reality, the Tennessee Valley Authority had signed a confidential memo to eventually develop up to 6 gigawatts of modular nuclear reactor capacity. The memo contained no project timeline or financial terms. These 6 gigawatts remain, in other words, largely hypothetical.
As X users will know, some especially erroneous posts now get a “community note,” a community correction of sorts containing “important context” or an outright fact check written by other users. These notes are supposed to contain a link to an authoritative source. The Energy Department “6 gigawatts” tweet is the first post I’ve ever seen to get a community note linking to a news story also linked to in the post itself.
But this is not the end of the foolishness. Take this claim, from last week:
This is just not a very sophisticated thing to say. It is true that wind and solar pose a distinct reliability challenge for power grids, and that grid engineers have expended time and effort thinking about how to manage that challenge. It is even true that advocates sometimes downplay these challenges. But it is not true that these technologies — or the power they generate — are “essentially worthless.” Grid-scale batteries, for instance, exist; they can store energy during the day and then release it onto the grid at times of peak demand. Transmission lines — like the sizable Grain Belt Express project, which was due to receive a federal loan guarantee until Wright canceled the funding — can also help manage these resources.
But perhaps such errors are forgivable when they come from an official account. What’s odd is that the secretary’s own account has made even stranger errors:
I had to reread this post several times to make sure I understood it correctly. Even then, I didn’t believe I had the right interpretation until the internet energy pundit Alex Epstein clarified it.
At first, I thought Wright was making some technical argument about how solar panels will never be able to meet total global energy demand. This would not have been true, but at least it would have been sort of interesting. No, per Epstein, what Wright was trying to communicate is that if you coated the world in solar panels, you would only produce electricity. And since electricity makes up 20% of the world’s total energy use today, “you would” — as Wright says “only be producing 20% of global energy.”
Never mind that if you did cover the world with solar panels (which would, to be clear, be a very bad idea), you would in fact produce vastly more energy than the global economy consumes today. Never mind that if you even covered half or a quarter of the world with solar panels (still a bad idea), you would obviously shift the economics of electricity — so that you could then, for instance, use the excess power to synthesize liquid fuel replacements for use in cars, ships, planes, etc. Never mind that, by one estimate, a single solar farm the size of New Mexico would meet the world’s electricity demand. (Building this would also be a bad idea, but not nearly as bad as the others.)
No, Wright is not saying any of that. What Wright is saying is the far more inane thought that solar panels only generate electricity, and the global economy does not only run on electricity. Thank you for that insight, Mr. Secretary.
Perhaps Wright does not know much about renewables; he was, after all, a fracking executive until recently. But his account is also curiously mistaken about fossil fuels:
This tweet is somehow wrong twice — it understates our own accomplishments. The United States is already the world’s powerhouse of natural gas. It has held that position since the first Obama administration, when it surpassed Russia to become the leading producer of natural gas globally. It became the world’s largest exporter of liquified natural gas in 2023.
Natural gas, however, is not the world’s fastest growing source of energy; it is merely the fastest growing source of fossil fuel energy. The fastest growing energy source — of any kind — is solar photovoltaics. Solar generation grew by an astounding 30% from 2023 to 2024, according to the International Energy Agency. By a slightly different metric, renewables (which include wind) grew by 6% last year, while natural gas grew by 2.7%, per the IEA.
It is worth reading some of the replies to Wright’s solar tweet; what you see are plenty of Trump-friendly (or at least Trump-agnostic) accounts raising their eyebrows at his clownishness. Fossil nerds, based tech bros, even AI experts are raising their eyebrows and asking: Surely the Energy Secretary couldn’t be this, well, ignorant?
I can’t claim to know what’s happening in Wright’s mind. But I do know what’s happening with his policy — and this weak messaging, in my view, points to the intractability of Wright’s position. On the one hand, Wright leads the Trump administration’s energy policy, and that policy is now dominated by a culture war against any type of electricity generation that doesn’t, in some way, “own the libs” — meaning coal, natural gas, and nuclear. The government has arbitrarily halted offshore wind construction, blocked hundreds of millions in funding, and yanked approvals away from nearly complete projects. Even if Wright believes that offshore wind is ill-advised, this kind of interference with businesses and contracts is even more costly — it is not how someone acts when he is focused on energy affordability above all.
On the other hand, Wright represents that quadrant of the modern Republican Party that remains focused (however feebly) on technological development and economic growth. This cohort champions artificial intelligence and American re-industrialization; they want an abundance of cheap energy; they fear a rising China. They are also alert and informed enough to realize that China must be doing something right — otherwise it wouldn’t be industrializing so quickly — and that a country that can add 256 gigawatts of electricity in six months without breaking a sweat will probably find some useful way to use it.
Between these two poles, Wright must scurry. So he insists that the Trump administration is working to add as much electricity capacity as possible for AI, and brags that AI turns electricity into intelligence, then qualifies that only some types of electricity generation are good for AI:
He says that AI “is going to massively empower the human mind” and transform the economy, but adds implicitly that this can only come under certain conditions, which don’t involve power lines that irritate farmers, wind farms that trouble the president, or the fastest-growing new source of power on the planet. He calls AI “the Manhattan Project of our time” and says that therefore the government needs to get out of the way.
It is an act that has worked, up to a point, so far. But Wright’s public performance of his complicated role can only go on for so long. Everyone who enters the Trump administration imagines that they will do so with their public image and integrity intact. Not everyone can pull it off.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob and Jesse unpack one of the key questions of the global fight against climate change with the Centre for Research on Energy and Clean Air’s Lauri Myllyvirta.
Robinson Meyer and Jesse Jenkins are off this week. Please enjoy this selection from the Shift Key archive.
China’s greenhouse gas emissions were essentially flat in 2024 — or they recorded a tiny increase, according to a November report from the Centre for Research on Energy and Clean Air, or CREA. A third of experts surveyed by the report believe that its coal emissions have peaked. Has the world’s No. 1 emitter of carbon pollution now turned a corner on climate change?
Lauri Myllyvirta is the co-founder and lead analyst at CREA, an independent research organization focused on air pollution and headquartered in Finland. Myllyvirta has worked on climate policy, pollution, and energy issues in Asia for the past decade, and he lived in Beijing from 2015 to 2019.
On this week’s episode of Shift Key, Rob and Jesse talk with Lauri about whether China’s emissions have peaked, why the country is still building so much coal power (along with gobs of solar and wind), and the energy-intensive shift that its economy has taken in the past five years. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: When we think about Chinese demand emissions going forward, it sounds like — somewhat to my surprise, perhaps — this is increasingly a power sector story, which is … is that wrong? Is it an industrial story? Is it a …
Lauri Myllyvirta: I want to emphasize the steel sector besides power. So if you simply look at what the China Steel Association is projecting, which is a gradual, gentle decline in total output and the increase in the availability of scrap. If you use that to replace coal-based with electricity-based steelmaking, you can achieve an about 40% reduction in steelmaking emissions over the next decade.
Of course, some of that is going to shift to electricity, so you need the clean electricity as well to realize it. But that’s at least as large an opportunity as there is on the power sector, so that’s what I’m telling everyone — that if you want to understand what China can accomplish over the next decade, it’s these two sectors, first and foremost.
Jesse Jenkins: Yeah. I mean, there’s some positive overall trends, right? If you look at the arc that we’re seeing in each sector, with renewables growth starting to outpace demand growth in electricity and eat into coal in absolute terms, not just market share, with the transition in the steel industry — which is sort of a story that we’ve seen in multiple countries as they move through different phases, right? As you’re building out your primary infrastructure, the first time you don’t have enough scrap, but as the infrastructure and rate of car recycling and things like that goes up, you now have a much larger supply. And that’s the case in the U.S., where the vast majority of our steel now comes from scrap.
And then, you know, the slowdown in the construction boom — China’s built an enormous amount of infrastructure and housing, and there’s only so much more that they need. And so the pace of that construction is likely to fall, as well. And then finally, the big shift to EVs in the transportation sector. So you’ve got your four largest-emitting sources on a very positive trajectory when it comes to greenhouse gas emissions.
Mentioned:
CREA’s reports on China’s emissions trajectory
Chinese EV companies beat their own targets in 2024
How China Created an EV Juggernaut
Jeremy Wallace: China Can’t Decide if It Wants to Be the World’s First ‘Electrostate’
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Uplight is a clean energy technology company that helps energy providers unlock grid capacity by activating energy customers and their connected devices to generate, shift, and save energy. The Uplight Demand Stack — which integrates energy efficiency, electrification, rates, and flexibility programs — improves grid resilience, reduces costs, and accelerates decarbonization for energy providers and their customers. Learn more at uplight.com/heatmap.
Music for Shift Key is by Adam Kromelow.
The group’s latest World Energy Outlook reflects the sharp swerve in U.S. policy over the past year.
The United States is different when it comes to energy and fossil fuels. While it’s no longer the world’s largest greenhouse gas emitter, no other country combines the United States’ production and consumptive capacity when it comes to oil — and, increasingly, natural gas. And no other country has made such a substantial recent policy U-turn in the past year, turning against renewables deployment at the same time as it is seeing electricity demand leap up thanks to data centers.
All of this is mirrored in the International Energy Agency’s 2025 World Energy Outlook, released Wednesday, which reflects a stark portrait of how America’s development of artificial intelligence and natural gas has made it distinct from its global peers. In combination, the effects of the One Big Beautiful Bill Act and the U.S.’s world-leading artificial intelligence development have meaningfully altered the group’s forecasts of global fossil fuel usage and emissions.
Much of the report compares two different scenarios for global energy usage and emissions — one looking at what governments are actually doing, and the other at what they say they want to do. The difference between the two is in the pace of the renewables buildout, and especially the pace at which fossil fuels’ place in the energy supply is wound down, if it is at all.
For example, the Current Policies Scenario (the stricter scenario) shows “demand for oil and natural gas continu[ing] to grow to 2050,” while the Stated Policies Scenario, or STEPS (the more optimistic one) shows oil use flattening “around 2030.” But in both cases, “gas demand continues growing into the 2030s, due mainly to changes in U.S. policies and lower gas prices.”

Even in the more optimistic outlook, natural gas use peaks later than it did in earlier forecasts. In 2035, the IEA projects, gas output will be 350 billion cubic meters greater than it projected last year, which is roughly equal to the annual gas production of Texas — and that’s in the optimistic scenario. “Three-quarters of this is for electricity generation, mainly in the United States, Japan and the Middle East, and reflects higher electricity demand and slower progress in adding renewables to the generation mix than projected,” the report says.
But the U.S. is not the whole story — the tide of renewable deployment continues apace. The clean energy analytics group Ember argues that the report’s “downgrades on clean growth in the U.S. are offset by rises in other countries,” especially as electric vehicles grow in popularity everywhere else. While the STEPS forecast shows a 30% drop in renewables capacity compared to last year’s projection in 2035 in the US (and a 60% drop in EVs on the road in 2035), “there are 20% more EVs projected in emerging markets outside China and the renewables forecast was also upgraded outside the U.S,” Ember said in a statement.
Ember attributes this to an “increasing focus on energy security,” with more countries following China in electrifying broader swathes of their economies in order to reduce their dependence on fossil fuel imports like natural gas, coal, and oil — including from the United States.
Similarly, Ember is sanguine about artificial intelligence throwing off projections for the wind-down of fossil fuels, which the IEA has and continues to portray generally as largely a U.S. phenomenon.
The IEA estimates that over 85% of global data center capacity growth will take place in the United States, China, and Europe, and that data centers will be responsible for only 6% to 10% of electricity demand growth in the EU and China through 2030. In the U.S., however, they’re responsible for about half of projected growth.
But it’s not just data centers that are causing the IEA to revise its figures. The IEA upped its forecast for electricity use in 2035 by 4% compared to last year, which amounts to some 1,700 terawatt-hours, a bit south of India’s annual electricity generation today. The group attributes this upward move in its forecast not just to “electricity demand to serve data centres” — which dominates discussion of energy use and climate change — but also to “higher demand for air conditioning in the Middle East and North Africa.”
While the economic benefits of artificial development are still necessarily speculative — with trillions of dollars of investment leading us potentially to a singularity of exponentially increasing technological development, machine-led human extinction, or somewhere in between — the benefits of air conditioning are far less so. With increased AC usage, even as temperature rises, heat-related mortality could fall.
And as the Global South heats and grows economically, its demand for and ability to procure air conditioning will grow, leading to higher energy usage and putting more pressure on the climate. The IEA figures square with another recent report from the climate and energy think tank Rhodium Group, which predicts a rise in emissions after 2060 due to economic development in the Global South.
In short, the energy consumption that feeds economic development all over the world is making the hottest parts of the world hotter while also enabling them to use more energy to cool their homes. At the same time, the richest parts of the world are increasing their electricity usage — and therefore their emissions — in order to develop a technology they hope will supercharge economic growth. The climate hangs in the balance.
After years of planning, the Tropical Forests Forever Facility has so far failed to take root.
In selecting a location for this year’s United Nations climate conference, host country Brazil chose symbolism over sense. Belém, the site of this year’s summit, is perched on the edge of the Amazon rainforest. The setting is meant to foreground the importance of nature in fighting climate change — despite the city’s desperately inadequate infrastructure for housing the tens of thousands of attendees the conference draws.
That mismatch of intention and resources has also played out in the meeting rooms of the gathering, known as COP30. The centerpiece of President Luiz Inácio Lula da Silva’s agenda was meant to be the Tropical Forests Forever Facility, an international finance scheme to raise at least $2 billion per year to fund forest conservation and restoration. After an inauspicious launch in which presumed supporters of the facility failed to put up any actual financing, however, it’s unclear whether the TFFF will have a chance to prove it can work.
Deforestation rates have hardly budged globally since 2021, despite more than 100 countries signing a pledge that year to halt and reverse deforestation and land degradation within the decade. The world lost more than 8 million hectares of forest to deforestation last year, causing the release of more than 4 billion metric tons of carbon dioxide into the atmosphere — nearly as much as the entire U.S. energy sector.
First proposed by the Brazilian government in Dubai at COP28, the TFFF was devised to deliver a more consistent source of funding to countries in the global south for forest conservation that would not depend on foreign aid budgets or be vulnerable to the ups and downs of the carbon market.
The plan involves setting up a fund with money borrowed from wealthier countries and private investors at low interest rates and invested in publicly traded bonds from emerging markets and developing economies that command higher interest rates. After paying back investors, the revenue generated by the spread — roughly a 3% return, if all goes to plan — would be paid out in annual lump sums to developing countries that have managed to keep deforestation at bay. Participating countries would have the right to spend the proceeds as they choose, so long as the money goes to support forests. At least 20% of the funds would also have to be set aside for indigenous peoples.
Brazil lined up substantial support for the idea ahead of this year’s launch. Six potential investor countries — France, Germany, Norway, the United Arab Emirates, the United Kingdom, and the United States — as well as five potential beneficiaries — Colombia, the Democratic Republic of Congo, Ghana, Indonesia, and Malaysia — joined a steering committee to help shape the development of the fund. The Brazilian government ultimately proposed a fundraising target of $25 billion from the sponsor countries, with the idea to attract about $100 billion from private investors, for a total of $125 billion to get the fund off the ground.
Once the fund started generating revenue, private investors would be paid out first, sponsor countries second, and forested countries last, with the $25 billion serving as insurance to the private investors should the emerging market bond issuers default on their payments. The fund itself would be managed by the World Bank, while a separate entity would govern payments made to forested countries.
While many in the international environmental community were enthusiastic about the plan — especially as a shift away from controversial carbon markets — some raised alarms.
Max Alexander Matthey, a German economics PhD student studying international finance, first saw a presentation on TFFF at COP29 and was baffled by its simplicity. “If it was that easy to make this 3% on borrowed money, why wouldn’t everyone else be doing it?” he recalled thinking at the time. After digging into the Brazilian government’s financial analysis and doing some of his own, Matthey came to believe that the fund’s proponents had underestimated the risk inherent to the investment strategy, as well as the cost of managing the $125 billion fund, he told me.
The whole reason these emerging market bonds command a higher interest rate, Matthey explained, is because they are riskier. If and when countries default on their debts, whether due to global financial shocks like pandemics or wars, or simple mismanagement, the “free money” available for forests will dry up. “These 3% are not up for grabs,” he told me. “They compensate for actual risk and defaults that will happen over time.”
The TFFF was designed to create an incentive for countries with tropical forests to invest in policies and programs to protect forests — to hire rangers to prevent illegal deforestation, to pay farmers not to raze their forests, to implement fire prevention strategies. “They have to heavily invest,” Matthey told me. “If we as the Global North say, Well, thanks for investing large shares of your budget into rainforest protection, but you won’t get any money from our side because financial markets turned the wrong way, that’s just not how you build trust.”
Matthey outlined his analysis in a Substack post in September with University of Calgary economist Aidan Hollis. They found that the JP Morgan EMBI index, which tracks emerging market sovereign bonds, has seen regular downturns of between 18 and 32 percentage points over the past two decades. In the case of the TFFF, a single 20-point loss would wipe out the $25 billion in sponsor debt “and halt rainforest flows, possibly before they even begin,” they wrote.
The energy research firm BloombergNEF seems to agree. In a report published last week outlining the state of international biodiversity finance ahead of COP30, BNEF forecast there would be “little progress” on the TFFF. “The 3% spread is not a money faucet, but a risk premium; studies on the TFFF appear not to have properly conducted risk analyses,” the report said, warning that in effect, the scheme would eat up development finance just to absorb private investor losses.
Just prior to that report’s release, confidence in the TFFF appeared to dip. Brazil’s finance minister lowered his fundraising ambition for the facility to $10 billion by 2026. A few days later, on the eve of the launch, Bloomberg News reported that the United Kingdom would not be contributing to the fund after the country’s treasury department warned it could not afford the investment, despite its significant involvement in the fund’s design.
Following the launch, Indonesia and Portugal each committed $1 billion, while Norway pledged $3 billion, although only if the fund successfully secures at least $10 billion. France also promised €500 million, or just over half a billion dollars, while Germany said it would contribute “significantly,” although it hasn’t said how much yet. All in all, countries committed just $5.5 billion above Brazil’s own initial $1 billion commitment — with at least $3 billion of that contingent on further fundraising.
Andrew Deutz, the managing director for global policy and partnerships at the World Wildlife Fund, which has also been heavily involved in developing the TFFF, assured me this was not the disappointment it appeared to be.
"I look at what just happened last week as validation that the model can work and that countries have confidence in it,” Deutz said. He pointed to the fact that 53 countries, including 19 potential investors, have endorsed the scheme. “A bunch of sponsor countries who haven’t been that engaged said, We like this idea, and I think that creates the opportunity and the momentum that we can get one or two more rounds of capitalization at least.” Deutz was bullish that Germany would come to the table with a pledge between $1 billion and $3 billion, and that the UK would “get guilted in” shortly. He expects to see additional pledges at the World Bank’s Spring Meetings next April, and a few more at the UN General Assembly next September.
As for criticisms of the fund’s investment strategy, he brushed them off, arguing that the risk was "quantifiable and manageable.” He has faith in the TFFF’s modeling showing that the fund’s managers will be able to earn high enough returns to pay back investors and still generate enough funds to pay tropical forest countries.
Charles Barber, the director of natural resources governance and policy at the World Resources Institute was more cautious on both fronts. “We’re glad it’s got as far as it has, but there’s a whole lot of questions that will need to be answered to really get it up,” he told me. Barber saw arguments both for and against the risky investment strategy, but he was skeptical that a starting point of $10 billion would be enough to attract sufficient private investment or give tropical forest countries enough of an incentive to participate.
Matthey has called the idea of a scaled-down TFFF a “worst-case scenario for everyone involved,” due to the high fixed costs of managing the fund, monitoring deforestation, administering the proceeds, etc. The potential payouts to forested countries would be so diminished as to amount to a “rounding error” rather than a true incentive, he wrote.
Deutz told me the TFFF’s architects always expected there to be a three- to four-year ramp-up period. If the fund gets one or two more rounds of capitalization, “we’ll see if it works — and then, assuming it works, you can keep adding to it,” he said. “This is something new and different, so it might take us a little while to prove it out and for people to get comfortable.”