You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
It’s not early phase-out. These 3 changes could overhaul the law’s clean electricity supports.

On Monday, the Republican-led House Ways and Means Committee released the first draft of its rewrite of America’s clean energy tax credits.
The proposal might look, at first, like a cautious paring back of the tax credits. But the proposal amounts to a backdoor repeal of the policies, according to energy system and tax analysts.
“The bill is written to come across as reasonable, but the devil is in the details,” Robbie Orvis, a senior analyst at Energy Innovation, a nonpartisan energy and climate think tank, told me. “It may not be literally the worst text we envisioned seeing, but it’s probably close.”
The proposal would strangle new energy development so quickly that it could raise power costs by as much as 7% over the next decade, according to the Rhodium Group, an energy and policy analysis firm.
Senate Republicans have already indicated that the proposal is unworkable. But to understand why, it’s worth diving into the specific requirements that render the proposal so destructive.
The clean energy tax credits are one of the centerpieces of American energy policy. They’re meant to spur companies to deploy new forms of energy technology, such as nuclear fusion or advanced geothermal wells, and simultaneously to cut carbon pollution from the American power grid.
The U.S. government has long used the tax code to encourage the build-out of wind turbines or solar panels. But when Democrats passed the Inflation Reduction Act in 2022, they rewrote a pair of key tax credits so that any technology that generates clean electricity would receive financial support.
Under the law as enacted, these clean electricity tax credits provide 10 years of support to any electricity project — no matter how it generates power — for the foreseeable future. But the new Republican proposal would begin phasing down the value of the credit starting in 2029, and end the program entirely in 2032.
That might sound like a slow and even reasonable phase-out. But a series of smaller changes to the law’s text introduce significant uncertainty about which projects would continue to qualify for the tax credit in the interim. Taken together, these new requirements would kill most, if not all, of the tax credits’ value.
Here are three reasons why the Republican proposal would prove so devastating to the American clean electricity industry.
The new Ways and Means proposal begins to phase out the clean energy tax credits immediately. The proposal cuts the value of the tax credit by 20% per year starting in 2029, and ends the credit entirely in 2032.
But the GOP proposal changes a key phrase that helps financiers invest confidently in a given project.
Under the law as it stands today, developers can’t claim a tax credit until a project is “placed in service” — meaning that it is generating electricity and selling it to the grid. But a project qualifies for a tax credit in the year that construction on that project begins.
For example, imagine a utility that begins building a new geothermal power plant this year, but doesn’t finish construction and connect it to the grid until 2029. Under current law, that company could qualify for the value of the credit as it stands today, but it wouldn’t begin to get money back on its taxes until 2029.
But the GOP proposal would change this language. Under the House Republican text, projects only qualify for a tax credit when they are “placed in service,” regardless of when construction begins. This means that the new geothermal power plant in the earlier example could only get tax credits as set at the 2029 value — regardless of when construction begins.
What’s more, if work on the project were delayed, say by a natural disaster or unexpected equipment shortage, and the power plant’s completion date was pushed into the following year, then the project would only qualify for credits as set at the 2030 value.
In other words, companies and utilities would have no certainty about a tax credit’s value until a project is completed and placed in service. Any postponement or slowdown at any part of the process — even if for a reason totally outside of a developer’s control — could reduce a tax credit’s value.
This makes the tax credits far less dependable than they are today. Generally, companies have more ability to plan around when construction on a power plant begins than they do over when it is placed in service.
This change will significantly raise financing costs for new energy projects of all types because it means that companies won’t be able to finalize their capital stack until a project is completed and turned on. The most complicated and adventurous projects — such as new geothermal, nuclear, or fusion power plants — could face the highest cost inflation.
The Inflation Reduction Act as it stands today attaches a “foreign entity of concern” rule to its $7,500 tax credit for electric vehicle buyers.
In order to qualify for that EV tax credit, automakers had to cut the percentage of Chinese-processed minerals and battery components that appear in their electric models every year. This phased in gradually over time — the idea being that while China dominates the EV and battery supply chain today, the requirement would provide a consistent spur to reshore production.
Somewhat ironically, the GOP proposal ditches the EV tax credit and its accompanying foreign sourcing rules. But it applies a strict version of the foreign entity of concern rule to every other tax credit in the law, including the clean electricity tax credits.
Under the House proposal, no project can qualify for the tax credits unless it receives no “material support” from a Chinese-linked entity. The language defines “material support” aggressively and expansively — it means any “any component, subcomponent, or applicable critical mineral” that is “extracted, processed, recycled, manufactured, or assembled.”
This provision, in other words, would essentially disqualify the use of any Chinese-made part, subcomponent, or metal in the construction of a clean electricity project, although the rule includes a partial and narrow carve-out for some components that are bought from a third-party. Even a mistakenly Chinese-sourced bolt could result in a project losing millions of dollars of tax credits.
Technically, the law also disqualifies the use of goods from other “foreign entities of concern” as defined under U.S. law, which include Russia, Iran, and North Korea. But China is the United States’ third largest trading partner, and it is the only manufacturer of the type of goods that matter to the law.
Solar projects would face immediate challenges under the new rule. China and its domestic companies command more than 80% of the market share for all stages of the solar panel manufacturing process, according to the International Energy Agency.
But then again, the proposal would be an issue for virtually all energy projects. Copper wiring, steel frames, grams of key metals — even geothermal plants rely on individual Chinese-made industrial components, according to Seaver Wang, an analyst at the Breakthrough Institute. These parts also intermingle on the global market, meaning that companies can’t be certain where a given part was made or where it comes from.
These new and stricter rules would kick in two years after the reconciliation bill passes, which likely means 2027.
This provision by itself would be unworkable. But it is made even worse by being coupled to the tax credit’s change to a “placed in service” standard. That’s because projects that are already under construction today might not meet these new foreign entity rules, essentially stripping them of tax credits that companies had already been banking on.
These projects have assumed that they will qualify for the tax credits’ full value, no matter when their power plant is completed, because they have already begun construction. But the GOP proposal would change this retroactively, possibly threatening the financial viability of energy projects that grid managers have been assuming will come online in the next few years.
In some ways, these two changes taken together are “worse than repeal,” Mike O’Boyle, an Energy Innovation analyst, told me. “A number of projects under construction now will lose eligibility."
It is also made worse by the House GOP plan to phase out the tax credits. If companies could plan on the tax credits remaining on the books long-term then the foreign entity rules might spur the creation of a larger domestic — or at least non-Chinese — supply chain for some clean energy inputs. But because the credits will phase out by 2032 regardless, fewer projects will qualify, and it won’t be worth it for companies to invest in alternative supply chains.
Finally, the House Republican proposal would end companies’ ability to sell the value of tax credits to other firms. The IRA had made it easier for utilities and developers to transfer the value of tax credits to other companies — essentially allowing companies with a lot of tax liability, such as banks, to acquire the rights to renewable developers’ credits.
The GOP proposal ends that right for every tax credit, even those that Republicans have historically looked on more favorably, such as the tax credit that rewards companies for capturing carbon dioxide from the atmosphere.
This change — coupled with the foreign entity and placed-in-service rules — will have an impact today on power markets by further gumming up the pipeline of new energy projects planned across the country, according to Advait Arun, an analyst at the Center for Public Enterprise.
The end to transferability “functionally imposes higher marginal tax rates on all of these projects,” Arun told me. “The prices that developers will get for their tax credits on the tax equity market today will be a lot lower than normal.”
That could significantly raise the cost of any new energy projects that get planned. And that will lead in the medium term to a further slowdown in the growth of electricity supply, just as turbine shortages have made it more difficult than ever to build a new natural gas power plant.
While many of these changes may seem academic, they will hit energy consumers faster than legislators might realize. Natural gas prices in the U.S. have been unusually high in 2025. A slowdown in the growth of non-fossil energy will further stress natural gas supplies, raising power prices.
Taken together, Orvis told me, these changes to the IRA “will increase the price of the vast majority of new capacity coming online next year,” Orvis said. “It’s an immediate price hike for new energy, and you can’t replace that with new gas.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: The snow squalls and cold air headed from the Ohio Valley to the Northeast are coming with winds of up to 55 miles per hour • A “western disturbance,” an extratropical storm that originates in the Mediterranean and travels eastward, is set to arrive in India and bring heavy snow to the Himalayas • Tropical Storm Basyang made landfall over the Philippines this morning, forcing Cebu City to cancel all in-person classes for public school students.
Vice President JD Vance delivered a 40-minute speech Wednesday appealing to 54 countries and the European Union to join a trading alliance led by the United States to establish a supply of critical minerals that could meaningfully rival China. The agreement would create a “preferential trade zone” meant to be “protected from disruptions through enforceable price floors.” The effort comes in response to years of export controls from Beijing that have sent the prices of key minerals over which China has near monopolies skyrocketing. “This morning, the Trump administration is proposing a concrete mechanism to return the global critical minerals market to a healthier, more competitive state,” Vance said at the State Department’s inaugural Critical Minerals Ministerial in Washington.
Under the Biden administration, the U.S. attempted to coordinate a network of trading partners, to make up for the minerals American mines no longer produced. The Treasury Department allowed automakers that sourced battery minerals to countries with which the U.S. had a free trade agreement to benefit from the most valuable version of the landmark electric vehicle tax credit reserved for power packs made with domestically-sourced metals. The White House worked with Republicans in Congress to eliminate the tax credit last year, demonstrating what Heatmap’s Matthew Zeitlin referred to as the “paradox” of Trump’s push for more domestic mining: A push to increase supply while eliminating one of the biggest sources of demand. The on-again, off-again tariff wars with allies haven’t done much to rally the spirit of camaraderie among America’s traditional trade partners either. Since then, as I have covered repeatedly in this newsletter, Trump has gone on a shopping spree for equity stakes in mining companies, shelled out grants through the military to mineral startups, and, most recently, created a $12 billion federal stockpile. Yet it’s come with plenty of missteps, as a former Department of Energy official told our colleague Robinson Meyer in his latest Shift Key podcast. Still, Congress is backing up the mining push. The House voted 224-195 Wednesday to approve legislation meant to speed up mining on federal lands.
Despite President Donald Trump’s threats to eliminate its funding, Congress has spared the long-running federal program that helps low-income Americans pay for heating and electric bills. The budget deal the president signed Tuesday to fund most federal agencies through September added $20 million to the Low Income Energy Assistance Program, bringing the total funding to just over $4 billion. It’s a full reversal of Trump’s position in May, when the administration asked Congress to completely eliminate the funding, Utility Dive reported. A second appropriations package Trump signed last month also included a small increase in funding for a separate program that subsidizes weatherization projects and other energy efficiency renovations for low- and moderate-income households.

Last week, I told you about copper prices soaring to a record — and seemingly unsustainable — high. While Goldman Sachs analysts expected the price for the metal needed for virtually anything electric to fall, it was still forecast to level off well above the average for the past few years. Well, that’s good news José Antonio Kast, the far-right leader scheduled to be inaugurated president of Chile next month. His incoming finance minister told the Financial Times the government plans to deliver economic growth rates of 4% and balance the country’s budget by 2029. If that proves possible, it’s only because Chile is the world’s largest producer of the red metal.
The U.S., meanwhile, is seeing early fruits of its global mineral diplomacy. The federal government’s International Development Finance Corporation said Wednesday that a U.S.-backed venture will begin shipping 50,000 tons of copper from the Democratic Republic of the Congo to Saudi Arabia and the United Arab Emirates. The export package comes a month after the same Congolese project pledged to send 100,000 tons to the U.S. The lending agency’s chief executive, Ben Black, said the partnership between Washington and Kinshasa “ensures valuable critical minerals are directed to the U.S. and our allies.”
Sign up to receive Heatmap AM in your inbox every morning:
Newcleo, the best-known European nuclear startup promising to build fourth-generation small modular reactors, just netted $85 million in its latest financing round, bringing its total fundraising for the past 12 months to more than $125 million. The financing round includes venture funds Kairos and Indaco Ventures, asset manager Azimut Investments, the CERN pension fund, and industrial giants such as steelmaker Danieli, concrete manufacturer Cementir Holding, and components producers such as Walter Tosto and Orion Valves. The money will “accelerate our expansion into the U.S.,” a nascent effort that has included brokering a partnership with fellow next-generation reactor startup Oklo. Unlike the California company, whose microreactor design uses liquid sodium instead of water as a coolant, Paris-based Newcleo has proposed building a lead-cooled unit. The design has already gained approval in the United Kingdom. “Our ability to deliver impactful low-carbon energy solutions for energy-intensive firms is proving an attractive investment rationale for both industrial and financial investors,” said Newcleo CEO Stefano Buono.
Last week, I told you about the trouble brewing for the controversial wood-pellet giant Drax, which built its business on government subsidies predicated on the idea that burning felled trees for electricity could somehow provide a low-carbon alternative to fossil fuels. Facing overdue scrutiny of its green credentials, the British company had hoped Japan, the world’s No. 2 importer of wood pellets, would provide a growth market. But Tokyo indicated it’s cutting off the subsidy spigot. Then, two days ago, I told you that a former Drax employee admitted the company misled the public when claiming it wasn’t felling old-growth trees to make its wood pellets. Now the union that represents its British workers, Unite, has blasted Drax for the “shameful betrayal” of threatening to cut as many as 350 jobs. That could total up to 10% of the workforce. “It is shameful that a firm making billions such as Drax is choosing to target its staff,” Sharon Graham, Unite’s general secretary, said, according to Energy Voice. “It is morally wrong that workers, their families, and local communities pay the price for corporate greed.”
Over at The Washington Post, billionaire owner Jeff Bezos’ management team just gutted the newspaper's Pulitzer Prize-winning climate desk. The paper sent layoff notices to at least 14 climate journalists, newsroom sources told veteran beat reporter Sammy Roth for his Climate-Colored Goggles newsletter. The pink slips included eight writers and reporters, an editor, and several video, data, and graphics journalists. I’ll echo Sammy’s sentiment with the highest compliment I can give: I was routinely jealous of the top-notch reporting the climate team published at the Post. Losing that nuanced, complex reporting, at this particular juncture in the history of our nation and our atmosphere, is devastating. It’s also infuriating when you read the back-of-the-napkin math New York Times reporter Peter Baker posted on X yesterday: “Last reported annual losses of Post: $100 million,” he wrote. “Number of years Bezos could absorb those losses with what he makes in a single week: 5.”
Take a guess who wrote this on X yesterday morning: “Solar energy is the energy of the future. Giant fusion reactor up there in the sky — we must rapidly expand solar to compete with China.” Go ahead, I’ll wait. Whomever you were going to name, you’re probably wrong. The answer, astonishingly, is Katie Miller, the right-wing influencer wife of top Trump adviser Stephen Miller. A regular feature of White House social media content, Katie Miller posted her praise for an industry her husband’s boss has done much to stymie in response to an Axios article on a poll that found strong support for solar among GOP voters. The survey, commissioned by the panel manufacturer First Solar, comes as the solar industry says that the administration is throttling its permitting. While Trump seems unlikely to let up on wind, it could be a sign of a brighter future for America’s fastest-growing source of electricity.
Microreactor maker Antares Nuclear just struck a deal with BWX Technologies to produce TRISO.
Long before the infamous trio of accidents at Three Mile Island, Chernobyl, and Fukushima, nuclear scientists started working on a new type of fuel that would make a meltdown nearly impossible. The result was “tri-structural isotropic” fuel, better known as TRISO.
The fuel encased enriched uranium kernels in three layers of ceramic coating designed to absorb the super hot, highly radioactive waste byproducts that form during the atom-splitting process. In theory, these poppyseed-sized pellets could have negated the need for the giant concrete containment vessels that cordon off reactors from the outside world. But TRISO was expensive to produce, and by the 1960s, the cheaper low-enriched uranium had proved reliable enough to become the industry standard around the globe.
TRISO had another upside, however. The cladding protected the nuclear material from reaching temperatures high enough that could risk a meltdown. That meant reactors using them could safely operate at hotter temperatures. When the United States opened its first commercial high-temperature gas-cooled reactor in 1979, barely three months after Three Mile Island, the Fort St. Vrain Generating Station in Colorado ran on TRISO. It was a short-lived experiment. After a decade, the high cost of the fuel and the technical challenges of operating the lone commercial atomic station in the U.S. that didn’t use water as a coolant forced Fort St. Vrain to close. TRISO joined the long list of nuclear technologies that worked, but didn’t pencil out on paper.
Now it’s poised for a comeback. X-energy, the nuclear startup backed by Amazon that plans to cool its 80-megawatt microreactors with helium, is building out a production line to produce its own TRISO fuel in hopes of generating both electricity for data centers and heat as hot as 1,400 degrees Fahrenheit for Dow Chemical’s petrochemical facilities. Kairos Power, the Google-backed rival with the country’s only deal to sell power from a fourth-generation nuclear technology — reactors designed to use coolants other than water — to a utility, is procuring TRISO for its molten fluoride salt-cooled microreactors, which are expected to generate 75 megawatts of electricity and reach temperatures above 1,200 degrees.
Then there’s Antares Nuclear. The California-based startup is designing 1-megawatt reactors cooled through sodium pipes that conduct heat away from the atom-splitting core. On Thursday, the company is set to announce a deal with the U.S. government-backed nuclear fuel enricher BWX Technologies to establish a new production line for TRISO to fuel Antares reactors, Heatmap has learned exclusively.
Unlike X-energy or Kairos, Antares isn’t looking to sell electricity to utilities and server farms. Instead, the customers the company has in mind are the types for whom the price of fuel is secondary to how well it functions under extraordinary conditions.
“We’re putting nuclear power in space,” Jordan Bramble, Antares’ chief executive, told me from his office outside Los Angeles.
Just last month, NASA and the Department of Energy announced plans to develop a nuclear power plant on the moon by the end of the decade. The U.S. military, meanwhile, is seeking microreactors that can free remote bases and outposts from the tricky, expensive task of maintaining fossil fuel supply chains. Antares wants to compete for contracts with both agencies.
“It’s a market where cost matters, but cost is not the north star,” Bramble said.
Unlike utilities, he said, “you’re not thinking of cost solely in terms of fuel cycle, but you’re thinking of cost holistically at the system level.” In other words, TRISO may never come as cheap as traditional fuel, but something that operates safely and reliably in extreme conditions ends up paying for itself over time with spacecrafts and missile-defense systems that work as planned and don’t require replacement.
That’s a familiar market for BWXT. The company — spun out in 2015 from Babcock and Wilcox, the reactor developer that built more than half a dozen nuclear plants for the U.S. during the 20th century — already enriches the bulk of the fuel for the U.S. military’s fleet of nuclear submarines, granting BWXT the industry’s highest-possible security clearance to work on federal contracts.
But BWXT, already the country’s leading producer of TRISO, sees an even wider market for the fuel.
“The value is that it allows you to operate at really high temperatures where you get high efficiencies,” Joseph Miller, BWXT’s president of government operations, told me. “We already have a lot of customer intrigue from the mining industry. I can see the same thing for synthetic fuels and desalination.”
BWXT isn’t alone in producing TRISO. Last month, the startup Standard Nuclear raised $140 million in a Series A round to build out its supply chain for producing TRISO. X-energy is establishing its own production line through a subsidiary called TRISO-X. And that’s just in the U.S. Russia’s state-owned nuclear company, Rosatom, is ramping up production of TRISO. China, which operates the world’s only commercial high-temperature gas-cooled reactor at the moment, also generates its own TRISO fuel.
Beijing’s plans for a second reactor based on that fourth-generation design could indicate a problem for the U.S. market: TRISO may work better in larger reactors, and America is only going for micro-scale units.
The world-leading high-temperature gas reactor China debuted in December 2023 maxes out at 210 megawatts of electricity. But the second high-temperature gas reactor under development is more than three times as powerful, with a capacity of 660 megawatts. At that size, the ultra-high temperatures a gas reactor can reach mean it takes longer for the coolant — such as the helium used at Fort St. Vrain — to remove heat. As a result, “you need this robust fuel form that releases very little radioactivity during normal operation and in accident conditions,” Koroush Shirvan, a researcher who studies advanced nuclear technologies at the Massachusetts Institute of Technology, told me.
But microreactors cool down faster because there’s less fuel undergoing fission in the core. “Once you get below a certain power level,” Shrivan said, “why would you have [TRISO]?”
Given the military and space applications Antares is targeting, however, where the added safety and functionality of TRISO merits the higher cost associated with using it, the company has a better use case than some of its rivals, Shrivan added.
David Petti, a former federal researcher who is one of the leading U.S. experts on TRISO, told me that when the government was testing TRISO for demonstration reactors, the price was at least double that of traditional reactor fuel. “That’s probably the best you could do,” he said in reference to the cost differential.
There are other uranium blends inside the TRISO pellets that could prove more efficient. The Chinese, for example, use uranium dioxide, essentially just an encased version of traditional reactor fuel. The U.S., by contrast, uses uranium oxycarbide, which allows for increased temperatures and higher burnups of the enriched fuel. Another option, which Bramble said he envisions Antares using in the future, would be uranium nitride, which has a greater density of fuel and could therefore last longer in smaller reactors used in space.
“But it’s not as tested in a TRISO system,” Petti said, noting that the federal research program that bolstered the TRISO efforts going on now started in 2002. “Until I see a good test that it’s good, the time and effort it takes to qualify is complicated.”
Since the uranium in TRISO is typically enriched to higher levels than standard fuel, BWXT’s facilities are subject to stricter safety rules, which adds “significant overhead,” Petti said.
“When you make a lot of fuel per year in your fuel factory, you can spread that cost and you can get a number that may be economic,” he said. “When you have small microreactors, you’re not producing an awful lot. You have to take that cost and charge it to the customer.”
BWXT is bullish on the potential for its customer base to grow significantly in the coming years. The company is negotiating a deal with the government of Wyoming to open a new factory there entirely dedicated to TRISO production. While he wouldn’t give specifics just yet, Miller told me BWXT is developing new technologies that can make TRISO production cheaper. He compared the cost curve to that of microchips, an industry in which he previously worked.
“Semiconductors were super expensive to manufacture. They were almost cost prohibitive,” Miller said. “But the cost curve starts to drop rapidly when you fully understand the manufacturing process and you know how to integrate the understanding into operational improvements.”
He leaned back in his chair on our Zoom call, and cracked a smile. “Frankly,” he said, “I feel more confident every day that we’re going to get a really, really cost driven formula on how to manufacture TRISO.”
The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.
The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.
Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.
The company’s CEO, Kunal Girotra, founded Lunar Energy in the summer of 2020 after leaving his job as head of Tesla Energy, which makes the Tesla Powerwall battery for homeowners and the Megapack for grid-scale storage. As he put it, back then, “everybody was focused on either building the next best electric car or solving problems for the grid at a centralized level.” But he was more interested in what was happening with households as home battery costs were declining. “The vision was, how can we get every home a battery system and with smart software, optimize that for dual benefit for the consumer as well as the grid?”
VPPs work by linking together lots of small energy resources. Most commonly, this includes solar, home batteries, and appliances that can be programmed to adjust their energy usage based on grid conditions. These disparate resources work in concert conducted by software that coordinates when they should charge, discharge, or ramp down their electricity use based on grid needs and electricity prices. So if a network of home batteries all dispatched energy to the grid at once, that would have the same effect as firing up a fossil fuel power plant — just much cleaner.
Lunar’s artificial intelligence-enabled home energy system analyzes customers’ energy use patterns alongside grid and weather conditions. That allows Lunar’s battery to automatically charge and discharge at the most cost-effective times while retaining an adequate supply of backup power. The batteries, which started shipping in California last year, also come integrated with the company’s Gridshare software. Used by energy companies and utilities, Gridshare already manages all of Sunrun’s VPPs, including nearly 130,000 home batteries — most from non-Lunar manufacturers — that can dispatch energy when the grid needs it most.
This accords with Lunar’s broader philosophy, Girotra explained — that its batteries should be interoperable with all grid software, and its Gridshare platform interoperable with all batteries, whether they’re made by Lunar or not. “That’s another differentiator from Tesla or Enphase, who are creating these walled gardens,” he told me. “We believe an Android-like software strategy is necessary for the grid to really prosper.” That should make it easier for utilities to support VPPs in an environment where there are more and more differentiated home batteries and software systems out there.
And yet the real-world impact of VPPs remains limited today. That’s partially due to the main problem Lunar is trying to solve — the technical complexity of coordinating thousands of household-level systems. But there are also regulatory barriers and entrenched utility business models to contend with, since the grid simply wasn’t set up for households to be energy providers as well as consumers.
Girotra is well-versed in the difficulties of this space. When he first started at Tesla a decade ago, he helped kick off what’s widely considered to be the country’s first VPP with Green Mountain Power in Vermont. The forward-looking utility was keen to provide customers with utility-owned Tesla Powerwalls, networking them together to lower peak system demand. But larger VPPs that utilize customer-owned assets and seek to sell energy from residential batteries into wholesale electricity markets — as Lunar wants to do — are a different beast entirely.
Girotra thinks their time has come. “This year and the next five years are going to be big for VPPs,” he told me. The tide started to turn in California last summer, he said, after a successful test of the state’s VPP capacity had over 100,000 residential batteries dispatching more than 500 megawatts of power to the grid for two hours — enough to power about half of San Francisco. This led to a significant reduction in electricity demand during the state’s evening peak, with the VPP behaving just like a traditional power plant.
Armed with this demonstration of potential and its recent influx of cash, Lunar aims to scale its battery fleet, growing from about 2,000 deployed systems today to about 10,000 by year’s end, and “at least doubling” every year after that. Ultimately, the company aims to leverage the popularity of its Gridshare platform to become a market maker, helping to shape the structure of VPP programs — as it’s already doing with the Community Choice Aggregators that it’s partnered with so far in California.
In the meantime, Girotra said Lunar is also involved in lobbying efforts to push state governments and utilities to make it easier for VPPs to participate in the market. “VPPs were always like nuclear fusion, always for the future,” he told me. But especially after last year’s demonstration, he thinks the entire grid ecosystem, from system operators to regulators, are starting to realize that the technology is here today. ”This is not small potatoes anymore.”