You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Investors are betting on gas to meet the U.S.’s growing electricity demand. Turbine manufacturers, however, have other plans.

Thanks to skyrocketing investment in data centers, manufacturing, and electrification, American electricity demand is now expected to grow nearly 16% over the next four years, a striking departure from two decades of tepid load growth. Providing the energy required to meet this new demand may require a six-fold increase in the pace of building new generation and new transmission ― hence bipartisan calls for an energy “abundance” agenda and, where the Trump administration is concerned, dreams of “energy dominance.” This is the next frontier in the fight between clean energy and fossil energy. Which one will end up fueling all of this new demand?
Investors are betting on natural gas. If these demand projections aren’t just hot air, the energy resource fueling all this growth will be, so to speak. Where actually deploying new gas power is concerned, however, there’s a big problem: All major gas turbine manufacturers, slammed by massive order growth, now have backlogs for new turbine deliveries stretching out to 2029 or later. Energy news coverage has mentioned these potential project development delays sometimes in passing, sometimes not at all. But this looming mismatch between gas power demand and turbine supply is a real problem for the grid and everyone who depends on it.
Taking a closer look at the investment plans of GE Vernova, the U.S.’s leading gas turbine manufacturer, suggests that, even as energy demand ramps up, these delays will persist. Rather than potentially overinvest in the face of rising demand and suffer the consequence of falling prices, GE Vernova and its competitors are committed to capital discipline, lengthening their order book, and defending shareholder value. Their reluctance to invest, while justified in some part by the nature and history of the industry, will threaten policymakers’ push for energy abundance ― to say nothing about economic growth or innovation.
Meanwhile, supply chain shortages will constrain the growth of clean energy generation. Inadequate investment in gas and an insufficient buildout of renewables in the face of unprecedented demand growth ― these are a toxic cocktail for the American energy system. Forget visions of an all-of-the-above energy strategy. How about none of the above?
Energy project developers, utilities, and investors have already started adjusting their gas buildout expectations and timelines. NextEra CEO John Ketchum stated in an earnings call that new gas projects “won’t be available at scale until 2030, and then only in certain pockets of the U.S.” That’s due not only to turbine queues, but also to an historically sluggish and increasingly expensive gas project development environment. “The country is starting from a standing start,” he added. “This is an industry that really hasn’t seen any active development or construction in years … all of that puts pressure on cost.”
Even in Texas, where lawmakers created the Texas Energy Fund to provide $10 billion of concessional financing to new gas power plants, delays are biting developers’ balance sheets. Just last week, private developer Engie withdrew two loan applications for gas peaker plant projects due to “equipment procurement constraints.” There’s no other way to spin it — the turbines are the problem.
Given that wait times and reservation payments drain developers’ liquidity and increase their financing costs, energy giants are trying to cut the line. Chevron is partnering with GE Vernova to develop up to 4 gigawatts of gas power plants for data centers. NextEra also announced a partnership with GE Vernova, through which the two companies will co-develop and co-own “multiple gigawatts” of natural gas power plants.
It’s safe to say that GE Vernova’s power division is riding high. The company’s investor materials suggest a heady growth trajectory. Gas turbine equipment orders rose 66% between 2023 and 2024, from 41 turbines to 68 turbines. Those 68 turbines represented about 20 gigawatts of capacity, double 2023’s order book. Developers reserved 9 gigawatts more of turbines; those reservations will turn into contracted production orders by 2026. At this point, 90% of GE Vernova’s total order volumes are in its backlog; for its power division, that represents almost $74 billion of equipment delivery and service contracts.
The company plans to invest $300 million into its gas power business in the next two years. And CEO Scott Strazik is pitching investors on continued growth. “Given our expansion plans to produce 70 to 80 heavy-duty gas turbines per year beginning in the second half of 2026, up from 48 this year, we are positioning to meet this demand. We expect to grow our gas equipment backlog considerably in 2025, even as we ramp to ship approximately 20 gigawatts annually starting in 2027, and expect to remain at that level going forward,” he said on the company’s Q4 earnings call.
That last sentence should give readers pause: GE Vernova has plans to build no more than 20 gigawatts of turbines per year, and developers that miss the cutoffs will just have to queue up for the next year’s order book. Why the limit?
Strazik laid out two key reasons. First, he’s looking for developers’ “receptivity to pay for what I will call premium slots” in 2028 and 2029, to “capture every dollar of price with the precious slots available,” as he told investors during a different presentation in December. GE Vernova’s annual report, which it released in February, refers to this strategy ― inviting desperate developers to bid up the price of scarce turbines ― as “expanding margins in backlog.” Second, the company remains hampered by supply constraints, particularly on ramping up its new heavy-duty and H-class turbines. There are real limits to how much more GE Vernova can build, and how quickly.
But over the longer term, it looks like GE Vernova is intentionally committing more to capital discipline rather than to broader capacity expansion. The company has $1.7 billion in free cash flow, a third of which it will return to shareholders through dividends and stock buybacks. And Strazik wants to avoid using the rest to underwrite what he sees as dangerous overcapacity that could threaten GE Vernova’s profitability. “I think we have to be very thoughtful to make sure that we don't add too much capacity, even though we are starting to sell slots into 2029,” he said during the investor update. “We're going to continue to be very sequential on how we invest.”
Strazik’s current strategy prioritizes productivity and efficiency improvements at GE Vernova’s existing plant in South Carolina over building new manufacturing facilities. Some capacity expansion, sure ― but no new plant. “Concrete's expensive, cranes are difficult,” he told investors. The company’s main competitors abroad, Mitsubishi and Siemens, have the same backlogs, and Mitsubishi, at least, is responding with a similarly measured strategy. Mitsubishi CFO Hisato Kozawa is open to some degree of capacity expansion, but maintains that Mitsubishi can only increase capacity “in a very planned manner with discipline. And if we need more capacity, we may want to first improve the rotation of the capacity.”
To the CEOs of all three companies, history would likely seem to justify this discipline. In 2017 and 2018, years of investment into capacity expansion coincided with a near-total collapse in global demand for gas turbines. This market crash was most likely the combined effect of low energy demand growth, energy efficiency improvements, continued use of coal power across Asia, the growing share of renewable energy on the grid, and investors’ realization that solar and wind energy could meaningfully undercut gas on price. All three companies laid off tens of thousands of employees, and the crash contributed to the complete breakup of General Electric and its partial spin-off into GE Vernova last year.
These gas turbine manufacturers are also some of the world’s leading wind turbine blade manufacturers, and a similar fate befell that sector in the past decade. Large-scale capacity expansion and competition for contracts drove down costs and margins across the supply chain — only for those to move sharply in reverse when supply chains froze up during the pandemic and interest rates shot up in 2023. Now offshore wind projects are plagued with problems and, at least in the U.S., President Trump’s de facto moratorium on offshore wind development has further reduced the sector’s ability to bounce back. These companies have been burned before. It only makes sense not to repeat past mistakes.
Combined-cycle gas turbines are complex machines, similar to airline engines in their intricacy and in the extensive global supply chains required to produce them. But their leading producers, afraid of getting over their skis, won’t undertake the massive upfront investments required to increase their long-term production capacity. Where does this leave the energy transition?
Bankers and energy project developers alike can see the writing on the wall. Beth Waters, managing director for project finance at Japanese bank MUFG, has insisted that “renewables have to be part of the electricity mix. It cannot just be gas-fired.” NextEra’s Ketchum has said the same: “Renewables are here today,” he stated during the latest earnings call — unlike gas. Jigar Shah, the head of the Department of Energy’s Loan Programs Office under President Biden, wrote on LinkedIn about his confidence that “batteries will be deployed at 10X the capacity of combined cycle natural gas units over the next 4 years.” Major utility companies, for their part, still have large clean energy procurement targets in their integrated resource plans. The smart money is clearly betting that an “all-of-the-above” energy deployment strategy will be better than eschewing any particular energy source.
They’re being optimistic. Not only does new utility-scale renewable energy take years to build, there’s also not yet enough transmission and longer-term energy storage on the grid to balance the variance in existing solar and wind resources. That prevents solar and wind from providing the kind of 24-hour stable power that corporate and industrial customers demand. Expanding energy storage and transmission resources will depend not just on regulatory reforms to permitting and interconnection, but also on resolving the severe bottleneck in grid transformers, where analysts believe capacity expansion has also failed to meet roaring demand, resulting in wait times of three to four years. (GE Vernova and Siemens build grid transformers too.) The status quo has left hundreds of gigawatts of clean energy projects across the country stuck in a regulatory and financing limbo, and the grid issues that tie up clean energy development will further constrain gas power growth.
To be sure, President Trump’s “energy dominance” agenda seems to favor the development of clean firm energy resources, such as nuclear and enhanced geothermal, to cut through the literal gridlock. The gas turbine manufacturers, all of which build steam turbines for nuclear power, stand to benefit from interest in restarting and upgrading now-shuttered plants. But building new nuclear projects currently takes at least 10 years, if not more. The singular new nuclear project built in the U.S. in the past three decades was completed seven years late and almost $20 billion over budget.
Enhanced geothermal might fare somewhat better ― its drilling technology comes straight from the fracking sector, and the pilot projects of companies like Fervo are achieving impressive heat and electricity production targets. Still, to turn heat into electricity, Fervo needs turbines, too. While enhanced geothermal projects need organic Rankine cycle turbines, as opposed to the combined-cycle gas turbines used in gas power plants, commodity market strategist Alex Turnbull theorizes that the commonalities between the two will threaten geothermal developers with the same delays and bottlenecks. (Fervo’s turbine supplier is an Italian subsidiary of Mitsubishi.)
The tech giants building data centers are already investing in new power ― but if neither nuclear nor geothermal can be deployed at scale in the absence of massive policy support, then that leaves tech companies paying for whatever energy sources their regional electricity grid relies on in the meantime. As Cy McGeady, a fellow at the Center for Strategic and International Studies, told Heatmap last year, “Nobody is willing to not build the next data center because of inability to access renewables.” But drawing so much from existing resources ― mostly gas, but also nuclear ― without building sufficient new power leaves less for every other energy consumer.
Policymakers on both sides of the aisle have their work cut out for them to avoid a crisis born of a failure to build any energy resource adequately: They must execute a thorough grid overhaul while also punching through the specific supply chain bottlenecks that prevent energy generation from being built quickly. Regardless of energy demand projections, these are goals worth pursuing. They advance grid reliability, energy affordability, and decarbonization, as well as accommodate any necessary energy supply growth.
Still, it’s worth questioning the prevailing narratives around load growth. It’s not clear how much energy data centers in particular will actually require. Not only have innovations like DeepSeek challenged market assumptions about tech companies’ investment requirements, but recent research also suggests that load growth projections could fall significantly if data centers’ energy demand were more flexible. Not to mention that data center developers often make duplicate interconnection requests with different utilities to maximize their chance of securing a power agreement.
Our energy grid will need a lot less hot air if data center demand goes up in smoke ― and that would be a relief for American consumers and the climate alike. But courting a gas turbine crisis should itself give policymakers pause. The fact that our energy system is at a point where neither turbines nor transformers nor transmission is available in sufficient capacity to meet any policymaker’s vision of energy abundance suggests that our leaders must reorient the government’s relationship to industry. During periods of economic uncertainty, capital discipline might appear rational, even profitable. But the power sector’s profits are, through rising energy bills and more frequent climate disasters, revealed to be everyone else’s costs. Between clean energy and fossil fuels — between what Americans need and what private industry can provide — the energy transition is shaping up to be, quite literally, a power struggle.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Citrine Informatics has been applying machine learning to materials discovery for years. Now more advanced models are giving the tech a big boost.
When ChatGPT launched three years ago, it became abundantly clear that the power of generative artificial intelligence had the capacity to extend far beyond clever chatbots. Companies raised huge amounts of funding based on the idea that this new, more powerful AI could solve fundamental problems in science and medicine — design new proteins, discover breakthrough drugs, or invent new battery chemistries.
Citrine Informatics, however, has largely kept its head down. The startup was founded long before the AI boom, back in 2013, with the intention of using simple old machine learning to speed up the development of more advanced, sustainable materials. These days Citrine is doing the same thing, but with neural networks and transformers, the architecture that undergirds the generative AI revolution.
“The technology transition we’re going through right now is pretty massive,” Greg Mulholland, Citrine’s founder and CEO, told me. “But the core underlying goal of the company is still the same: help scientists identify the experiments that will get them to their material outcome as fast as possible.”
Rather than developing its own novel materials, Citrine operates on a software-as-a-service model, selling its platform to companies including Rolls-Royce, EMD Electronics, and chemicals giant LyondellBassell. While a SaaS product may be less glamorous than independently discovering a breakthrough compound that enables something like a room-temperature superconductor or an ultra-high-density battery, Citrine’s approach has already surfaced commercially relevant materials across a variety of sectors, while the boldest promises of generative AI for science remain distant dreams.
“You can think of it as science versus engineering,” Mulholland told me. “A lot of science is being done. Citrine is definitely the best in kind of taking it to the engineering level and coming to a product outcome rather than a scientific discovery.” Citrine has helped to develop everything from bio-based lotion ingredients to replace petrochemical-derived ones, to plastic-free detergents, to more sustainable fire-resistant home insulation, to PFAS-free food packaging, to UV-resistant paints.
On Wednesday, the company unveiled two new platform capabilities that it says will take its approach to the next level. The first is essentially an advanced LLM-powered filing system that organizes and structures unwieldy materials and chemicals datasets from across a company. The second is an AI framework informed by an extensive repository of chemistry, physics, and materials knowledge. It can ingest a company’s existing data, and, even if the overall volume is small, use it to create a list of hundreds of potential new materials optimized for factors such as sustainability, durability, weight, manufacturability, or whatever other outcomes the company is targeting.
The platform is neither purely generative nor purely predictive. Instead, Mulholland explained, companies can choose to use Citrine’s tools “in a more generative mode” if they want to explore broadly and open up the field of possible materials discoveries, or in a more “optimized” mode that stays narrowly focused on the parameters they set. “What we find is you need a healthy blend of the two,” he told me.
The novel compounds the model spits out still need to be synthesized and tested by humans. “What I tell people is, any plane made of materials designed exclusively by Citrine and never tested is not a plane I’m getting on,” Mulholland told me. The goal isn’t to achieve perfection right out of the lab, but rather to optimize the experiments companies end up having to do. “We still need to prove materials in the real world, because the real world will complicate it.”
Indeed it will. For one thing, while AI is capable of churning out millions of hypothetical materials — as a tool developed by Google DeepMind did in 2023 — materials scientists have since shown that many are just variants of known compounds, while others are unstable, unable to be synthesized, or otherwise irrelevant under real world conditions.
Such failures likely stem, in part, from another common limitation of AI models trained solely on publicly available materials and chemicals data: Academic research tends to report only successful outcomes, omitting data on what didn’t work and which compounds weren’t viable. That can lead models to be overly optimistic about the magnitude and potential of possible materials solutions and generate unrealistic “discoveries” that may have already been tested and rejected.
Because Citrine’s platform is deployed within customer organizations, it can largely sidestep this problem by tuning its model on niche, proprietary datasets. These datasets are small when compared with the vast public repositories used to train Citrine’s base model, but the granular information they contain about prior experiments — both successes and failures — has proven critical to bringing new discoveries to market.
While the holy grail for materials science may be a model trained on all the world’s relevant data — public and private, positive and negative — at this point that’s just a fantasy, one of Citrine’s investors, Mark Cupta of Prelude Ventures, told me over email. “It’s hard to get buy-in from the entire material development world to make an open-source model that pulls in data from across the field.”
Citrine’s last raise, which Prelude co-led, came at the very beginning of 2023, as the AI wave was still gathering momentum. But Mulholland said there’s no rush to raise additional capital — in fact, he expects Citrine to turn a profit in the next year or so.
That milestone would strongly validate the company’s strategy, which banks on steady revenue from its subscription-based model to compensate for the fact that it doesn’t own the intellectual property for the materials it helps develop. While Mulholland told me that many players in this space are trying to “invent new materials and patent them and try to sell them like drugs,” Citriene is able to “invent things much more quickly, in a more realistic way than the pie in the sky, hoping for a Nobel Prize [approach].”
Citrines is also careful to assure that its model accounts for real world constraints such as regulations and production bottlenecks. Say a materials company is creating an aluminum alloy for an automaker, Mulholland explained — it might be critical to stay within certain elemental bounds. If the company were to add in novel elements, the automaker would likely want to put its new compound through a rigorous testing process, which would be annoying if it’s looking to get to market as quickly as possible. Better, perhaps, to tinker around the edges of what’s well understood.
In fact, Mulholland told me it’s often these marginal improvements that initially bring customers into the fold, convincing them that this whole AI-for-materials thing is more than just hype. “The first project is almost always like, make the adhesive a little bit stickier — because that’s a good way to prove to these skeptical scientists that AI is real and here to stay,” he said. “And then they use that as justification to invest further and further back in their product development pipeline, such that their whole product portfolio can be optimized by AI.”
Overall, the company says that its new framework can speed up materials development by 80%. So while Mulholland and Citrine overall may not be going for the Nobel in Chemistry, don’t doubt for a second that they’re trying to lead a fundamental shift in the way consumer products are designed.
“I’m as bullish as I can possibly be on AI in science,” Mulholland told me. “It is the most exciting time to be a scientist since Newton. But I think that the gap between scientific discovery and realized business is much larger than a lot of AI folks think.”
Plus more insights from Heatmap’s latest event Washington, D.C.
At Heatmap’s event, “Supercharging the Grid,” two members of the House of Representatives — a California Democrat and a Colorado Republican — talked about their shared political fight to loosen implementation of the National Environmental Policy Act to accelerate energy deployment.
Representatives Gabe Evans and Scott Peters spoke with Heatmap’s Robinson Meyer at the Washington, D.C., gathering about how permitting reform is faring in Congress.
“The game in the 1970s was to stop things, but if you’re a climate activist now, the game is to build things,” said Peters, who worked as an environmental lawyer for many years. “My proposal is, get out of the way of everything and we win. Renewables win. And NEPA is a big delay.”
NEPA requires that the federal government review the environmental implications of its actions before finalizing them, permitting decisions included. The 50-year-old environmental law has already undergone several rounds of reform, including efforts under both Presidents Biden and Trump to remove redundancies and reduce the size and scope of environmental analyses conducted under the law. But bottlenecks remain — completing the highest level of review under the law still takes four-and-a-half years, on average. Just before Thanksgiving, the House Committee on Natural Resources advanced the SPEED Act, which aims to ease that congestion by creating shortcuts for environmental reviews, limiting judicial review of the final assessments, and preventing current and future presidents from arbitrarily rescinding permits, subject to certain exceptions.
Evans framed the problem in terms of keeping up with countries like China on building energy infrastructure. “I’ve seen how other parts of the world produce energy, produce other things,” said Evans. “We build things cleaner and more responsibly here than really anywhere else on the planet.”
Both representatives agreed that the SPEED Act on its own wouldn’t solve all the United States’ energy issues. Peters hinted at other permitting legislation in the works.
“We want to take that SPEED Act on the NEPA reform and marry it with specific energy reforms, including transmission,” said Peters.
Next, Neil Chatterjee, a former Commissioner of the Federal Energy Regulatory Commission, explained to Rob another regulatory change that could affect the pace of energy infrastructure buildout: a directive from the Department of Energy to FERC to come up with better ways of connecting large new sources of electricity demand — i.e. data centers — to the grid.
“This issue is all about data centers and AI, but it goes beyond data centers and AI,” said Chatterjee. “It deals with all of the pressures that we are seeing in terms of demand from the grid from cloud computing and quantum computing, streaming services, crypto and Bitcoin mining, reshoring of manufacturing, vehicle electrification, building electrification, semiconductor manufacturing.”
Chatterjee argued that navigating load growth to support AI data centers should be a bipartisan issue. He expressed hope that AI could help bridge the partisan divide.
“We have become mired in this politics of, if you’re for fossil fuels, you are of the political right. If you’re for clean energy and climate solutions, you’re the political left,” he said. “I think AI is going to be the thing that busts us out of it.”
Updating and upgrading the grid to accommodate data centers has grown more urgent in the face of drastically rising electricity demand projections.
Marsden Hanna, Google’s head of energy and dust policy, told Heatmap’s Jillian Goodman that the company is eyeing transmission technology to connect its own data centers to the grid faster.
“We looked at advanced transition technologies, high performance conductors,” said Hanna. “We see that really as just an incredibly rapid, no-brainer opportunity.”
Advanced transmission technologies, otherwise known as ATTs, could help expand the existing grid’s capacity, freeing up space for some of the load growth that economy-wide electrification and data centers would require. Building new transmission lines, however, requires permits — the central issue that panelists kept returning to throughout the event.
Devin Hartman, director of energy and environmental policy at the R Street Institute, told Jillian that investors are nervous that already-approved permits could be revoked — something the solar industry has struggled with under the Trump administration.
“Half the battle now is not just getting the permits on time and getting projects to break ground,” said Hartman. “It’s also permitting permanence.”
This event was made possible by the American Council on Renewable Energy’s Macro Grid Initiative.
On gas turbine backorders, Europe’s not-so-green deal, and Iranian cloud seeding
Current conditions: Up to 10 inches of rain in the Cascades threatens mudslides, particularly in areas where wildfires denuded the landscape of the trees whose roots once held soil in place • South Africa has issued extreme fire warnings for Northern Cape, Western Cape, and Eastern Cape • Still roiling from last week’s failed attempt at a military coup, Benin’s capital of Cotonou is in the midst of a streak of days with temperatures over 90 degrees Fahrenheit and no end in sight.

Exxon Mobil Corp. plans to cut planned spending on low-carbon projects by a third, joining much of the rest of its industry in refocusing on fossil fuels. The nation’s largest oil producer said it would increase its earnings and cash flow by $5 billion by 2030. The company projected earnings to grow by 13% each year without any increase in capital spending. But the upstream division, which includes exploration and production, is expected to bring in $14 billion in earnings growth compared to 2024. The key projects The Wall Street Journal listed in the Permian Basin, Guyana and at liquified natural gas sites would total $4 billion in earnings growth alone over the next five years. The announcement came a day before the Department of the Interior auctioned off $279 million of leases across 80 million acres of federal waters in the Gulf of Mexico.
Speaking of oil and water, early Wednesday U.S. armed forces seized an oil tanker off the coast of Venezuela in what The New York Times called “a dramatic escalation in President Trump’s pressure campaign against Nicolás Maduro.” When asked what would become of the vessel's oil, Trump said at the White House, “Well, we keep it, I guess.”
The Federal Reserve slashed its key benchmark interest rate for the third time this year. The 0.25 percentage point cut was meant to calibrate the borrowing costs to stay within a range between 3.5% and 3.75%. The 9-3 vote by the central bank’s board of governors amounted to what Wall Street calls a hawkish cut, a move to prop up a cooling labor market while signaling strong concerns about future downward adjustments that’s considered so rare CNBC previously questioned whether it could be real. But it’s good news for clean energy. As Heatmap’s Matthew Zeitlin wrote after the September rate cut, lower borrowing costs “may provide some relief to renewables developers and investors, who are especially sensitive to financing costs.” But it likely isn’t enough to wipe out the effects of Trump’s tariffs and tax credit phaseouts.
GE Vernova plans to increase its capacity to manufacture gas turbines by 20 gigawatts once assembly line expansions are completed in the middle of next year. But in a presentation to investors this week, the company said it’s already sold out of new gas turbines all the way through 2028, and has less than 10 gigawatts of equipment left to sell for 2029. It’s no wonder supersonic jet startups, as I wrote about in yesterday’s newsletter, are now eyeing a near-term windfall by getting into the gas turbine business.
Sign up to receive Heatmap AM in your inbox every morning:
The European Union will free more than 80% of the companies from environmental reporting rules under a deal struck this week. The agreement between EU institutions marks what Politico Europe called a “major legislative victory” for European Commission President Ursula von der Leyen, who has sought to make the bloc more economically self-sufficient by cutting red tape for business in her second term in office. The rollback is also a win for Trump, whose administration heavily criticized the EU’s green rules. It’s also a victory for the U.S. president’s far-right allies in Europe. The deal fractured the coalition that got the German politician reelected to the EU’s top job, forcing her center-right faction to team up with the far right to win enough votes for secure victory.
Ravaged by drought, Iran is carrying out cloud-seeding operations in a bid to increase rainfall amid what the Financial Times clocked as “the worst water crisis in six decades.” On Tuesday, Abbas Aliabadi, the energy minister, said the country had begun a fresh round of injecting crystals into clouds using planes, drones, and ground-based launchers. The country has even started developing drones specifically tailored to cloud seeding.
The effort comes just weeks after the Islamic Republic announced that it “no longer has a choice” but to move its capital city as ongoing strain on water supplies and land causes Tehran to sink by nearly one foot per year. As I wrote in this newsletter, Iranian President Masoud Pezeshkian called the situation a “catastrophe” and “a dark future.”
The end of suburban kids whiffing diesel exhaust in the back of stuffy, rumbling old yellow school buses is nigh. The battery-powered bus startup Highland Electric Fleets just raised $150 million in an equity round from Aiga Capital Partners to deploy its fleets of buses and trucks across the U.S., Axios reported. In a press release, the company said its vehicles would hit the streets by next year.