You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Investors are betting on gas to meet the U.S.’s growing electricity demand. Turbine manufacturers, however, have other plans.
Thanks to skyrocketing investment in data centers, manufacturing, and electrification, American electricity demand is now expected to grow nearly 16% over the next four years, a striking departure from two decades of tepid load growth. Providing the energy required to meet this new demand may require a six-fold increase in the pace of building new generation and new transmission ― hence bipartisan calls for an energy “abundance” agenda and, where the Trump administration is concerned, dreams of “energy dominance.” This is the next frontier in the fight between clean energy and fossil energy. Which one will end up fueling all of this new demand?
Investors are betting on natural gas. If these demand projections aren’t just hot air, the energy resource fueling all this growth will be, so to speak. Where actually deploying new gas power is concerned, however, there’s a big problem: All major gas turbine manufacturers, slammed by massive order growth, now have backlogs for new turbine deliveries stretching out to 2029 or later. Energy news coverage has mentioned these potential project development delays sometimes in passing, sometimes not at all. But this looming mismatch between gas power demand and turbine supply is a real problem for the grid and everyone who depends on it.
Taking a closer look at the investment plans of GE Vernova, the U.S.’s leading gas turbine manufacturer, suggests that, even as energy demand ramps up, these delays will persist. Rather than potentially overinvest in the face of rising demand and suffer the consequence of falling prices, GE Vernova and its competitors are committed to capital discipline, lengthening their order book, and defending shareholder value. Their reluctance to invest, while justified in some part by the nature and history of the industry, will threaten policymakers’ push for energy abundance ― to say nothing about economic growth or innovation.
Meanwhile, supply chain shortages will constrain the growth of clean energy generation. Inadequate investment in gas and an insufficient buildout of renewables in the face of unprecedented demand growth ― these are a toxic cocktail for the American energy system. Forget visions of an all-of-the-above energy strategy. How about none of the above?
Energy project developers, utilities, and investors have already started adjusting their gas buildout expectations and timelines. NextEra CEO John Ketchum stated in an earnings call that new gas projects “won’t be available at scale until 2030, and then only in certain pockets of the U.S.” That’s due not only to turbine queues, but also to an historically sluggish and increasingly expensive gas project development environment. “The country is starting from a standing start,” he added. “This is an industry that really hasn’t seen any active development or construction in years … all of that puts pressure on cost.”
Even in Texas, where lawmakers created the Texas Energy Fund to provide $10 billion of concessional financing to new gas power plants, delays are biting developers’ balance sheets. Just last week, private developer Engie withdrew two loan applications for gas peaker plant projects due to “equipment procurement constraints.” There’s no other way to spin it — the turbines are the problem.
Given that wait times and reservation payments drain developers’ liquidity and increase their financing costs, energy giants are trying to cut the line. Chevron is partnering with GE Vernova to develop up to 4 gigawatts of gas power plants for data centers. NextEra also announced a partnership with GE Vernova, through which the two companies will co-develop and co-own “multiple gigawatts” of natural gas power plants.
It’s safe to say that GE Vernova’s power division is riding high. The company’s investor materials suggest a heady growth trajectory. Gas turbine equipment orders rose 66% between 2023 and 2024, from 41 turbines to 68 turbines. Those 68 turbines represented about 20 gigawatts of capacity, double 2023’s order book. Developers reserved 9 gigawatts more of turbines; those reservations will turn into contracted production orders by 2026. At this point, 90% of GE Vernova’s total order volumes are in its backlog; for its power division, that represents almost $74 billion of equipment delivery and service contracts.
The company plans to invest $300 million into its gas power business in the next two years. And CEO Scott Strazik is pitching investors on continued growth. “Given our expansion plans to produce 70 to 80 heavy-duty gas turbines per year beginning in the second half of 2026, up from 48 this year, we are positioning to meet this demand. We expect to grow our gas equipment backlog considerably in 2025, even as we ramp to ship approximately 20 gigawatts annually starting in 2027, and expect to remain at that level going forward,” he said on the company’s Q4 earnings call.
That last sentence should give readers pause: GE Vernova has plans to build no more than 20 gigawatts of turbines per year, and developers that miss the cutoffs will just have to queue up for the next year’s order book. Why the limit?
Strazik laid out two key reasons. First, he’s looking for developers’ “receptivity to pay for what I will call premium slots” in 2028 and 2029, to “capture every dollar of price with the precious slots available,” as he told investors during a different presentation in December. GE Vernova’s annual report, which it released in February, refers to this strategy ― inviting desperate developers to bid up the price of scarce turbines ― as “expanding margins in backlog.” Second, the company remains hampered by supply constraints, particularly on ramping up its new heavy-duty and H-class turbines. There are real limits to how much more GE Vernova can build, and how quickly.
But over the longer term, it looks like GE Vernova is intentionally committing more to capital discipline rather than to broader capacity expansion. The company has $1.7 billion in free cash flow, a third of which it will return to shareholders through dividends and stock buybacks. And Strazik wants to avoid using the rest to underwrite what he sees as dangerous overcapacity that could threaten GE Vernova’s profitability. “I think we have to be very thoughtful to make sure that we don't add too much capacity, even though we are starting to sell slots into 2029,” he said during the investor update. “We're going to continue to be very sequential on how we invest.”
Strazik’s current strategy prioritizes productivity and efficiency improvements at GE Vernova’s existing plant in South Carolina over building new manufacturing facilities. Some capacity expansion, sure ― but no new plant. “Concrete's expensive, cranes are difficult,” he told investors. The company’s main competitors abroad, Mitsubishi and Siemens, have the same backlogs, and Mitsubishi, at least, is responding with a similarly measured strategy. Mitsubishi CFO Hisato Kozawa is open to some degree of capacity expansion, but maintains that Mitsubishi can only increase capacity “in a very planned manner with discipline. And if we need more capacity, we may want to first improve the rotation of the capacity.”
To the CEOs of all three companies, history would likely seem to justify this discipline. In 2017 and 2018, years of investment into capacity expansion coincided with a near-total collapse in global demand for gas turbines. This market crash was most likely the combined effect of low energy demand growth, energy efficiency improvements, continued use of coal power across Asia, the growing share of renewable energy on the grid, and investors’ realization that solar and wind energy could meaningfully undercut gas on price. All three companies laid off tens of thousands of employees, and the crash contributed to the complete breakup of General Electric and its partial spin-off into GE Vernova last year.
These gas turbine manufacturers are also some of the world’s leading wind turbine blade manufacturers, and a similar fate befell that sector in the past decade. Large-scale capacity expansion and competition for contracts drove down costs and margins across the supply chain — only for those to move sharply in reverse when supply chains froze up during the pandemic and interest rates shot up in 2023. Now offshore wind projects are plagued with problems and, at least in the U.S., President Trump’s de facto moratorium on offshore wind development has further reduced the sector’s ability to bounce back. These companies have been burned before. It only makes sense not to repeat past mistakes.
Combined-cycle gas turbines are complex machines, similar to airline engines in their intricacy and in the extensive global supply chains required to produce them. But their leading producers, afraid of getting over their skis, won’t undertake the massive upfront investments required to increase their long-term production capacity. Where does this leave the energy transition?
Bankers and energy project developers alike can see the writing on the wall. Beth Waters, managing director for project finance at Japanese bank MUFG, has insisted that “renewables have to be part of the electricity mix. It cannot just be gas-fired.” NextEra’s Ketchum has said the same: “Renewables are here today,” he stated during the latest earnings call — unlike gas. Jigar Shah, the head of the Department of Energy’s Loan Programs Office under President Biden, wrote on LinkedIn about his confidence that “batteries will be deployed at 10X the capacity of combined cycle natural gas units over the next 4 years.” Major utility companies, for their part, still have large clean energy procurement targets in their integrated resource plans. The smart money is clearly betting that an “all-of-the-above” energy deployment strategy will be better than eschewing any particular energy source.
They’re being optimistic. Not only does new utility-scale renewable energy take years to build, there’s also not yet enough transmission and longer-term energy storage on the grid to balance the variance in existing solar and wind resources. That prevents solar and wind from providing the kind of 24-hour stable power that corporate and industrial customers demand. Expanding energy storage and transmission resources will depend not just on regulatory reforms to permitting and interconnection, but also on resolving the severe bottleneck in grid transformers, where analysts believe capacity expansion has also failed to meet roaring demand, resulting in wait times of three to four years. (GE Vernova and Siemens build grid transformers too.) The status quo has left hundreds of gigawatts of clean energy projects across the country stuck in a regulatory and financing limbo, and the grid issues that tie up clean energy development will further constrain gas power growth.
To be sure, President Trump’s “energy dominance” agenda seems to favor the development of clean firm energy resources, such as nuclear and enhanced geothermal, to cut through the literal gridlock. The gas turbine manufacturers, all of which build steam turbines for nuclear power, stand to benefit from interest in restarting and upgrading now-shuttered plants. But building new nuclear projects currently takes at least 10 years, if not more. The singular new nuclear project built in the U.S. in the past three decades was completed seven years late and almost $20 billion over budget.
Enhanced geothermal might fare somewhat better ― its drilling technology comes straight from the fracking sector, and the pilot projects of companies like Fervo are achieving impressive heat and electricity production targets. Still, to turn heat into electricity, Fervo needs turbines, too. While enhanced geothermal projects need organic Rankine cycle turbines, as opposed to the combined-cycle gas turbines used in gas power plants, commodity market strategist Alex Turnbull theorizes that the commonalities between the two will threaten geothermal developers with the same delays and bottlenecks. (Fervo’s turbine supplier is an Italian subsidiary of Mitsubishi.)
The tech giants building data centers are already investing in new power ― but if neither nuclear nor geothermal can be deployed at scale in the absence of massive policy support, then that leaves tech companies paying for whatever energy sources their regional electricity grid relies on in the meantime. As Cy McGeady, a fellow at the Center for Strategic and International Studies, told Heatmap last year, “Nobody is willing to not build the next data center because of inability to access renewables.” But drawing so much from existing resources ― mostly gas, but also nuclear ― without building sufficient new power leaves less for every other energy consumer.
Policymakers on both sides of the aisle have their work cut out for them to avoid a crisis born of a failure to build any energy resource adequately: They must execute a thorough grid overhaul while also punching through the specific supply chain bottlenecks that prevent energy generation from being built quickly. Regardless of energy demand projections, these are goals worth pursuing. They advance grid reliability, energy affordability, and decarbonization, as well as accommodate any necessary energy supply growth.
Still, it’s worth questioning the prevailing narratives around load growth. It’s not clear how much energy data centers in particular will actually require. Not only have innovations like DeepSeek challenged market assumptions about tech companies’ investment requirements, but recent research also suggests that load growth projections could fall significantly if data centers’ energy demand were more flexible. Not to mention that data center developers often make duplicate interconnection requests with different utilities to maximize their chance of securing a power agreement.
Our energy grid will need a lot less hot air if data center demand goes up in smoke ― and that would be a relief for American consumers and the climate alike. But courting a gas turbine crisis should itself give policymakers pause. The fact that our energy system is at a point where neither turbines nor transformers nor transmission is available in sufficient capacity to meet any policymaker’s vision of energy abundance suggests that our leaders must reorient the government’s relationship to industry. During periods of economic uncertainty, capital discipline might appear rational, even profitable. But the power sector’s profits are, through rising energy bills and more frequent climate disasters, revealed to be everyone else’s costs. Between clean energy and fossil fuels — between what Americans need and what private industry can provide — the energy transition is shaping up to be, quite literally, a power struggle.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: In the Atlantic, the tropical storm that could, as it develops, take the name Jerry is making its way westward toward the U.S. • In the Pacific, Hurricane Priscilla strengthened into a Category 2 storm en route to Arizona and the Southwest • China broke an October temperature record with thermometers surging near 104 degrees Fahrenheit in the southeastern province of Fujian.
The Department of Energy appears poised to revoke awards to two major Direct Air Capture Hubs funded by the Infrastructure Investment and Jobs Act in Louisiana and Texas, Heatmap’s Emily Pontecorvo reported Tuesday. She got her hands on an internal agency project list that designated nearly $24 billion worth of grants as “terminated,” including Occidental Petroleum’s South Texas DAC Hub and Louisiana's Project Cypress, a joint venture between the DAC startups Heirloom and Climeworks. An Energy Department spokesperson told Emily that he was “unable to verify” the list of canceled grants and said that “no further determinations have been made at this time other than those previously announced,”referring to the canceled grants the department announced last week. Christoph Gebald, the CEO of Climeworks, acknowledged “market rumors” in an email, but said that the company is “prepared for all scenarios.” Heirloom’s head of policy, Vikrum Aiyer, said the company wasn’t aware of any decision the Energy Department had yet made.
While the list floated last week showed the Trump administration’s plans to cancel the two regional hydrogen hubs on the West Coast, the new list indicated that the Energy Department planned to rescind grants for all seven hubs, Emily reported. “If the program is dismantled, it could undermine the development of the domestic hydrogen industry,” Rachel Starr, the senior U.S. policy manager for hydrogen and transportation at Clean Air Task Force told her. “The U.S. will risk its leadership position on the global stage, both in terms of exporting a variety of transportation fuels that rely on hydrogen as a feedstock and in terms of technological development as other countries continue to fund and make progress on a variety of hydrogen production pathways and end uses.”
Remember the Tesla announcement I teased in yesterday’s newsletter? The predictions proved half right: The electric automaker did, indeed, release a cheaper version of its midsize SUV, the Model Y, with a starting price just $10 shy of $40,000. Rather than a new Roadster or potential vacuum cleaner, as the cryptic videos the company posted on CEO Elon Musk’s social media site hinted, the second announcement was a cheaper version of the Model 3, already the lower-end sedan offering. Starting at $36,990, InsideEVs called it “one of the most affordable cars Tesla has ever sold, and the cheapest in 2025.” But it’s still a far cry from Musk’s erstwhile promise to roll out a Tesla for less than $30,000.
That may be part of why the company is losing market share. As Heatmap’s Matthew Zeitlin reported, Tesla’s slice of the U.S. electric vehicle sales sank to its lowest-ever level in August despite Americans’ record scramble to use the federal tax credits before the September 30 deadline President Donald Trump’s new tax law set. General Motors, which sold more electric vehicles in the third quarter of this year than in all of 2024, offers the cheapest battery-powered passenger vehicle on the market today, the Chevrolet Equinox, which starts at $35,100.
Get Heatmap AM directly in your inbox every morning:
Trump’s pledge to revive the United States’ declining coal industry was always a gamble — even though, as Matthew reported in July, global coal demand is rising. Three separate stories published Tuesday show just how stacked the odds are against a major resurgence:
As you may recall from two consecutive newsletters last month, Secretary of Energy Chris Wright said “permitting reform” was “the biggest remaining thing” in the administration’s agenda. Yet Republican leaders in Congress expressed skepticism about tacking energy policy into the next reconciliation bill. This week, however, Utah Senator Mike Lee, the chairman of the Senate Committee on Energy and Natural Resources, called for a legislative overhaul of the National Environmental Policy Act. On Monday, the pro-development social media account Yimbyland — short for Yes In My Back Yard — posted on X: “Reminder that we built the Golden Gate Bridge in 4.5 years. Today, we wouldn’t even be able to finish the environmental review in 4.5 years.” In response, Lee said: “It’s time for NEPA reform. And permitting reform more broadly.”
Last month, a bipartisan permitting reform bill got a hearing in the House of Representatives. But that was before the government shutdown. And sources familiar with Democrats’ thinking have in recent months suggested to me that the administration’s gutting of so many clean energy policies has left Republicans with little to bargain with ahead of next year’s midterm elections.
Soon-to-be Japanese prime minister Sanae Takaichi.Yuichi Yamazaki - Pool/Getty Images
On Saturday, Japan’s long-ruling Liberal Democratic Party elected its former economic minister, Sanae Takaichi, as its new leader, putting her one step away from becoming the country’s first woman prime minister. Under previous administrations, Japan was already on track to restart the reactors idled after the 2011 Fukushima disaster. But Takaichi, a hardline conservative and nationalist who also vowed to re-militarize the nation, has pushed to speed up deployment of new reactors and technologies such as fusion in hopes of making the country 100% self-sufficient on energy.
“She wants energy security over climate ambition, nuclear over renewables, and national industry over global corporations,” Mika Ohbayashi, director at the pro-clean-energy Renewable Energy Institute, told Bloomberg. Shares of nuclear reactor operators surged by nearly 7% on Monday on the Tokyo Stock Exchange, while renewable energy developers’ stock prices dropped by as much as 15%
Researchers at the United Arab Emirates’ University of Sharjah just outlined a new method to transform spent coffee grounds and a commonly used type of plastic used in packaging into a form of activated carbon that can be used for chemical engineering, food processing, and water and air treatments. By repurposing the waste, it avoids carbon emitting from landfills into the atmosphere and reduces the need for new sources of carbon for industrial processes. “What begins with a Starbucks coffee cup and a discarded plastic water bottle can become a powerful tool in the fight against climate change through the production of activated carbon,” Dr. Haif Aljomard, lead inventor of the newly patented technology, said in a press release.
Last week’s Energy Department grant cancellations included funding for a backup energy system at Valley Children’s Hospital in Madera, California
When the Department of Energy canceled more than 321 grants in an act of apparent retribution against Democrats over the government shutdown, Russ Vought, President Trump’s budget czar, declared that the money represented “Green New Scam funding to fuel the Left's climate agenda.”
At least one of the grants zeroed out last week, however, was supposed to help keep the lights on at a children’s hospital.
The $29 million grant was intended to build a 3.3-megawatt long-duration energy storage system at Valley Children’s Hospital, a large pediatric hospital in Madera, California. The system would “power critical hospital operations during outage events,” such as when the California grid shuts down to avoid starting wildfires, according to project documents.
“The U.S. Department of Energy’s cancellation of funding for [the] long-duration energy storage demonstration grant is disappointing,” Zara Arboleda, a spokesperson for the hospital, told me.
Valley Children’s Hospital is a 358-bed hospital that says it serves more than 1.3 million children across California’s Central Valley. It has 116 neonatal intensive care unit beds and nationally ranked specialties in pediatric neurology, orthopedics, and lung surgery, among others.
Energy Secretary Chris Wright has characterized the more than $7.5 billion in grants canceled last week as part of an ongoing review of financial awards made by the Biden administration. But the timing of the cancellations — and Vought’s gleeful tweets about them — suggests a more vindictive purpose. Republican lawmakers and President Trump himself threatened to unleash Vought as a kind of rogue budget cutter before the federal government shut down last week.
“We don’t control what he’s going to do,” Senator John Thune told Politico last week. “I have a meeting today with Russ Vought, he of PROJECT 2025 Fame, to determine which of the many Democrat Agencies, most of which are a political SCAM, he recommends to be cut,” Trump posted on the same day.
Up until this year, canceling funding that is already under contract with a private party would have been thought to be straightforwardly illegal under federal law. But the Supreme Court’s conservative majority has allowed the Trump administration to act with previously unimaginable freedom while it considers ruling on similar cases.
Faraday Microgrids, the contractor that was due to receive the funding, is already building a microgrid for the hospital. The proposed backup power system — which the grant stipulated should be “non-lithium-ion” — was supposed to be funded by the Energy Department’s Office of Clean Energy Demonstrations, with the goal of finding new ways of storing electricity without using lithium-ion batteries, and was meant to work in concert with that new microgrid and snap on in times of high stress.
That microgrid project is still moving forward, Arboleda, the hospital’s spokesperson, told me. “Valley Children’s Hospital continues to build and soon will operate its microgrid announced in 2023 to ensure our facilities have access to reliable and sustainable energy every minute of every day for our patients and our care providers,” she added. That grid will contain some storage, but not the long-term storage system discussed in the official plan.
Faraday Microgrids, formerly known as Charge Bliss, didn’t respond to a request for comment, but its website touts its ability to secure grants and other government funding for energy projects.
In a statement, a spokesman for the Energy Department said that the grant was canceled because the project wasn’t feasible. “Following an in-depth review of the financial award, it was determined, among other reasons, that the viability of the project was not adequate to warrant further disbursements,” Ben Dietderich, a spokesman for the Energy Department, told me.
The children’s hospital, at least, is in good company. On Tuesday, a Trump administration document obtained by Heatmap News suggested the Energy Department is moving to kill bipartisan-backed funding for two direct air capture hubs in Texas and Louisiana. And although California has lost the most grants of any state, the Energy Department has also sought to terminate funding for new factories and industrial facilities across Republican-governed states.
Editor’s note: This story initially misstated the number of neonatal intensive care unit beds at Valley Children’s Hospital. It has been corrected.
Rob and Jesse break down China’s electricity generation with UC San Diego’s Michael Davidson.
China announced a new climate commitment under the Paris Agreement at last month’s United Nations General Assembly meeting, pledging to cut its emissions by 7% to 10% by 2035. Many observers were disappointed by the promise, which may not go far enough to forestall 2 degrees Celsius of warming. But the pledge’s conservatism reveals the delicate and shifting politics of China’s grid — and how the country’s central government and its provinces fight over keeping the lights on.
On this week’s episode of Shift Key, Rob and Jesse talk to Michael Davidson, an expert on Chinese electricity and climate policy. He is a professor at the University of California, San Diego, where he holds a joint faculty appointment at the School of Global Policy and Strategy and the Jacobs School of Engineering. He is also a senior associate at the Center for Strategic and International Studies, and he was previously the U.S.-China policy coordinator for the Natural Resources Defense Council.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Your research and other people’s research has revealed that basically, when China started making capacity payments to coal plants, in some cases, it didn’t have the effect on the bottom line of these plants that was hoped for, and also we didn’t really see coal generation go down or change in the year that it happened. It wasn’t like they were paying these plants to stick around and not run. They were basically paying these plants, it seems like, to do the exact same thing they did the year before, but now they also got paid. And maybe that was needed for their economics, we can talk about it.
Why did coal get those payments and not, say, batteries or other sources of spare capacity, like pumped hydro storage, like nuclear? Why did coal, specifically, get payments for capacity? And does it have to do with spinning reserve? Or does it have to do with the political economy of coal in China?
Michael Davidson: When it came out, we said exactly the same thing. We said, okay, this should be a technology neutral payment scheme, and it should be a market, not a payment, right? But China’s building these things up little by little. Over time we’ve seen, historically, actually, a number of systems internationally started with payments before they move to markets because they realize that you could get a lot more competitive pressure with markets.
The capacity payment scheme for coal is extremely simple, right? It says, okay, for each province, we’re going to say what percentage of our benchmark coal investment costs are we going to subsidize. It’s extremely simple. It does not account for how much you’re using it at a plant by plant level. It does not account for other factors, renewables, etc. It’s a very coarse metric. But I wouldn’t say that it had had some, you know, perverse negative effect on the outcome of what coal generation is. Probably more likely is that these payments were seen, for some, as extra support. But then for some that are really hurting, they’re saying, okay, well then we will maybe put up less obstacles to market reforms.
But then on top of that, you have to put in the hourly energy demand growth story and say, okay, well you have all these renewables, but you don’t have enough storage to shift to evening peaks. You are going to rely on coal to meet that given the current rigid dispatch system. And so you’re dispatching them kind of regardless of whether or not you have the payment schemes.
I will say that I was a skeptic, right? Because when people told me that China should put in place a capacity market, I said, China has overcapacity. So if you have an overcapacity situation, you put in place a market, the prices should be zero. So what’s the point? But actually, when you’re looking out ahead with all of this surplus coal capacity that you’re trying to push down, you’re trying to push those capacity factors of those coal plans from 50%, 60%, down to 20% or even lower, they need to have other revenue schemes if you’re not going to dramatically open up your spot markets, which China is very hesitant to do — very risk averse when it comes to the openness of spot markets, in terms of price gaps. So that’s a necessary part of this transition. But it can be done more efficiently, and it should done technology neutral.
And by the way that is happening in certain places. That’s a national scheme, but we actually see that the implementation — for example, Shaanxi province, we have a technology neutral scheme that would include other resources, not just coal.
Mentioned:
China’s new pledge to cut its emissions by 2035
What an ‘ambitious’ 2035 electricity target looks like for China
China’s Clean Energy Pledge is Clouded by Coal, The Wire China
Jesse’s upshift; Rob’s upshift.
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
A warmer world is here. Now what? Listen to Shocked, from the University of Chicago’s Institute for Climate and Sustainable Growth, and hear journalist Amy Harder and economist Michael Greenstone share new ways of thinking about climate change and cutting-edge solutions. Find it here.
Music for Shift Key is by Adam Kromelow.