You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
We are shaped by the places we live. When they change, we change too.
Tucked about two-thirds of the way through the overview of the U.S. government’s Fifth National Climate Assessment — a congressionally mandated, roughly quinquennial summary of how climate change is affecting the country — comes a startling observation. Climate change is not just increasing the chance of catastrophic natural disasters like heat waves and hurricanes, nor are the tolls only economic, with “billion-dollar disasters” now happening on average once every three weeks. The researchers found climate damages are also rending the very fabric of what makes us Americans.
Hundreds of scientists contributed to the new report, which synthesized thousands of pages of environmental, economic, and atmospheric research published since the last climate assessment was released in 2018. Many of the findings are grim but ring familiar: Nowhere in the U.S. is safe from the effects of climate change, the report says, and we are not cutting pollution and fossil fuel use quickly enough to stop the impacts from worsening.
But while the massive new report includes, for the first time, a standalone chapter about the climate impacts on the American economy, the authors are also careful to single out how climate change is reaching values that aren’t so easily quantified — like our connection to place. On the one hand, the loss of geographic and recreational heritage might seem insignificant compared to billion-dollar storms and major loss of life. But it is things like “fishing traditions, trades passed down over generations, and cultural heritage-based tourism” that make Californians Californians or Southerners Southerners.
Some of these impacts you can, admittedly, put a number on: Water sports are projected to see financial gains as more people seek out cool recreation in the hotter days to come; even hiking could see positive impacts as less snowpack means trails are accessible more days of the year. But overall, “outdoor-dependent industries, such as tourism in Hawaii and the U.S.-Affiliated Pacific Islands and skiing in the Northwest, face significant economic loss from projected rises in park closures and reductions in work force as continued warming leads to deterioration of coastal ecosystems and shorter winter seasons with less snowfall.”
In general, quality of life threats are “more difficult to quantify” than economic ones, the report notes. As our geographies change, negative impacts might include “increased crime and domestic violence, harm to mental health, reduced happiness, and fewer opportunities for outdoor recreation and play.”
What’s clear, though, is that at its most severe, climate change threatens our very identities as Americans. “The prevalence of invasive species and harmful algal blooms is increasing as waters warm, threatening activities like swimming along Southeast beaches, boating and fishing for walleye in the Great Lakes, and viewing whooping cranes along the Gulf Coast,” the report explains. But what does it mean to be from Georgia if you can no longer swim in the rivers, or to live on Michigan’s Saginaw Bay if you can’t fish? Already it is with high confidence that the authors write “climate change has disrupted sense of place in the Northwest, affecting noneconomic values such as proximity and access to nature and residents’ feelings of security and stability.”
This is, of course, the most pronounced in Indigenous communities, with the report citing threats to the “critical connections between people and the ocean,” “food sovereignty,” and “spiritual connections associated with forests,” as well as noting that “center[ing] local and Indigenous Knowledge systems” when it comes to adaptation is one way to improve the possibilities of climate resilience. At the same time, anyone with a connection to their home is at risk of having that connection ruptured, altered, or significantly changed. Decreased access to “outdoor activities such as skiing and hiking” can even lead to “increased risk of chronic diseases, mental health impacts, and” — once again — “loss of cultural heritage and connection to place,” the researchers found.
At over 1,000 pages long, there is much to unpack in the Fifth National Climate Assessment. But undergirding its urgings and cautious optimism is a reminder that we are shaped by the places we live. And when those places change, as every corner of America is now, we change, too.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
SpaceX has also now been dragged into the fight.
The value of Tesla shares went into freefall Thursday as its chief executive Elon Musk traded insults with President Donald Trump. The war of tweets (and Truths) began with Musk’s criticism of the budget reconciliation bill passed by the House of Representatives and has escalated to Musk accusing Trump of being “in the Epstein files,” a reference to the well-connected financier Jeffrey Epstein, who died in federal detention in 2019 while awaiting trial on sex trafficking charges.
The conflict had been escalating steadily in the week since Musk formally departed the Trump administration with what was essentially a goodbye party in the Oval Office, during which Musk was given a “key” to the White House.
Musk has since criticized the reconciliation bill for not cutting spending enough, and for slashing credits for electric vehicles and renewable energy while not touching subsidies for oil and gas. “Keep the EV/solar incentive cuts in the bill, even though no oil & gas subsidies are touched (very unfair!!), but ditch the MOUNTAIN of DISGUSTING PORK in the bill,” Musk wrote on X Thursday afternoon. He later posted a poll asking “Is it time to create a new political party in America that actually represents the 80% in the middle?”
Tesla shares were down around 5% early in the day but recovered somewhat by noon, only to nosedive again when Trump criticized Musk during a media availability. The shares had fallen a total of 14% from the previous day’s close by the end of trading on Thursday, evaporating some $150 billion worth of Tesla’s market capitalization.
As Musk has criticized Trump’s bill, Trump and his allies have accused him of being sore over the removal of tax credits for the purchase of electric vehicles. On Tuesday, Speaker of the House Mike Johnson described Musk’s criticism of the bill as “very disappointing,” and said the electric vehicle policies were “very important to him.”
“I know that has an effect on his business, and I lament that,” Johnson said.
Trump echoed that criticism Thursday afternoon on Truth Social, writing, “Elon was ‘wearing thin,’ I asked him to leave, I took away his EV Mandate that forced everyone to buy Electric Cars that nobody else wanted (that he knew for months I was going to do!), and he just went CRAZY!” He added, “The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Governmental Subsidies and Contracts. I was always surprised that Biden didn’t do it!”
“In light of the President’s statement about cancellation of my government contracts, @SpaceX will begin decommissioning its Dragon spacecraft immediately,” Musk replied, referring to the vehicles NASA uses to ferry personnel and supplies to and from the International Space Station.
The company will use the seed funding to bring on more engineers — and customers.
As extreme weather becomes the norm, utilities are scrambling to improve the grid’s resilience, aiming to prevent the types of outages and infrastructure damage that often magnify the impact of already disastrous weather events. Those events cost the U.S. $182 billion in damages last year alone.
With the intensity of storms, heat waves, droughts, and wildfires growing every year, some utilities are now turning to artificial intelligence in their quest to adapt to new climate realities. Rhizome, which just announced a $6.5 million seed round, uses AI to help assess and prevent climate change-induced grid infrastructure vulnerabilities. It’s already working with utilities such as Avangrid, Seattle City Light, and Vermont Electric Power Company to do so.
“With a combination of utility system data and historical weather and hazard information, and then climate projection information, we can build a full profile of likelihood and consequence of failure at a very high resolution,” Rhizome co-founder and CEO Mish Thadani told me.
While utilities often have lots of data about the history of their assets and the surrounding landscape, there’s no real holistic system to bring together these disparate datasets and provide a simple overview of systemic risk across a range of different scenarios. Utilities usually rely on historical data to make decisions about their assets — a practice that’s increasingly unhelpful as climate change makes previously rare extreme weather events more likely.
Rhizome aims to solve both problems, serving as an integrated platform for risk assessment and mitigation that incorporates forward-looking climate modeling into its projections. The company measures its success against modeled counterfactuals that determine avoided power outages and the economic losses associated with these hypothetical blackouts. “So we can say the anticipated failure rate across the system for a Category 1 hurricane was X, and after you invest in the system, it will be Y,” Thadani told me. “Or if you’ve made a bunch of investments in the system, and you do experience a Category 1 hurricane, what would have been the failure rate had those investments not been made?”
This allows utilities to provide regulators with much more robust data to back up their funding requests. So while Thadani expects electricity prices to continue to rise and ratepayers to bear the burden, he told me that Rhizome can ultimately help regulators and utilities keep costs in check by making sure that every dollar spent on risk mitigation goes as far as possible.
Rhizome’s seed round, which came in oversubscribed, was led by the early-stage tech-focused venture firm Base10 Partners, which aims to automate traditional sectors of the economy. Additional funders include climate investors MCJ and CLAI, as well as the wildfire-focused venture firm Convective Capital. In addition to its standard risk assessment system, Rhizome has also developed a wildfire-specific risk mitigation tool. This quantifies not only how likely a hazard is to occur and its potential impact on utility infrastructure, but also the probability that an equipment failure would spark a wildfire, based on the geography of the area and historical ignition data.
Thadani told me that he considers evaluating wildfire risk “to be the next step in a sequence” as a utility evaluates the threats to its system overall. So while customers can choose to adopt either the standard product or the wildfire-specific product, many could gain utility from both, he said. The company has also developed a third offering specifically tailored for municipal and cooperative utilities. This more affordable system doesn’t provide the same machine learning-powered cost-benefit metrics, but can still help these smaller entities evaluate their infrastructure’s vulnerability.
Right now, Rhizome has a “lean and mighty” team of just 11 people, Thadani told me. With this latest raise, he said that the company will immediately hire five or six engineers, primarily to do further research and development. As Rhizome looks to onboard more and larger customers, it’s planning to incorporate more advanced modeling features into its platform and operate it increasingly autonomously, such that the model can retrain itself as new weather, climate, and utility data becomes available.
The company is out of the pilot phase with most of its customers, Thadani said, having signed multiple enterprise software contracts. That’s big, as utilities have gained a reputation for showing an initial appetite for testing innovative technologies, only to balk at the cost of full-scale deployment. Thadani told me Rhizome has been able to avoid this so-called “pilot purgatory” by making a point to engage with senior-level stakeholders at utilities — not just the innovation teams — to “graduate from that pilot ecosystem more quickly.”
Add it to the evidence that China’s greenhouse gas emissions may be peaking, if they haven’t already.
Exactly where China is in its energy transition remains somewhat fuzzy. Has the world’s largest emitter of greenhouse gases already hit peak emissions? Will it in 2025? That remains to be seen. But its import data for this year suggests an economy that’s in a rapid transition.
According to government trade data, in the first fourth months of this year, China imported $12.1 billion of coal, $100.4 billion of crude oil, and $18 billion of natural gas. In terms of value, that’s a 27% year over year decline in coal, a 8.5% decline in oil, and a 15.7% decline in natural gas. In terms of volume, it was a 5.3% decline, a slight 0.5% increase, and a 9.2% decline, respectively.
“Fossil fuel demand still trends down,” Lauri Myllyvirta, the co-founder of the Centre for Research on Energy and Clean Air, wrote on X in response to the news.
Morgan Stanley analysts predicted Friday in a note to clients that this “weak downstream demand” for coal in China would “continue to hinder coal import volume.”
Another piece of China’s emissions and coal usage puzzle came from Indonesia, which is a major coal exporter. Citing data from trade data service Kpler, Reuters reported Friday that Indonesia’s thermal coal exports “have dropped to their lowest in three years” thanks to “weak demand in China and India,” the world’s two biggest coal importers. Indonesia’s thermal coal exports dropped 12% annually to 150 million tons in the first third of the year, Reuters reported.
China’s official goal is to hit peak emissions by 2030 and reach “carbon neutrality” by 2060. The country’s electricity grid is largely fueled by coal (with hydropower coming in at number two), as is its prolific production of steel and cement, which is energy and, specifically, coal-intensive. For a few years in the 2010s, more cement was poured in China than in the whole 20th century in the United States. China also accounts for about half of the world’s steel production.
At the same time, China’s electricity demand growth is being largely met by renewables, implying that China can expand its economy without its economy-wide, annual emissions going up. This is in part due to a massive deployment of renewables. In 2023, China installed enough non-carbon-emitting electricity generation to meet the total electricity demand of all of France.
China’s productive capacity has shifted in a way that’s less carbon intensive, experts on the Chinese energy system and economy have told Heatmap. The economy isshifting more toward manufacturing and away from the steel-and-cement intensive breakneck urbanization of the past few decades, thanks to a dramatically slowing homebuilding sector.
Chinese urban residential construction was using almost 300 million tons of steel per year at its peak in 2019, according to research by the Reserve Bank of Australia, about a third of the country’s total steel usage. (Steel consumption for residential construction would fall by about half by 2023.) By contrast, the whole United States economy consumes less than 100 million tons of steel per year.
To the extent the overall Chinese economy slows down due to the trade war with the United States, coal usage — and thus greenhouse gas emissions — would slow as well. Although that hasn’t happened yet — China also released export data on Friday that showed sustained growth, in spite of the tariff barriers thrown up by the Trump administration.