You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Ice is melting — but what does that mean for climate science?

As is usually the case, one of the most basic questions in climate science has also been one of the most difficult to answer: How much energy is the Earth sending out into space? The pair of shoebox-sized satellites that comprise PREFIRE — Polar Radiant Energy in the Far-InfraRed Experiment — could very well provide the answer.
Principal investigator Tristan L’Ecuyer, a professor in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin-Madison and the director of the Cooperative Institute for Meteorological Satellite Studies, spoke with Heatmap about PREFIRE. Tentatively scheduled to launch in May, the project stands not only to make future climate models more accurate, but could also help shape a new generation of atmospheric exploration.
The interview has been edited for length and clarity.
Could you tell me a little bit about your research and the work that you do?
A lot of our climate information comes from models — where I come in is trying to make sure that those predictions are rooted in actual observations of our planet. But it’s impossible to cover the whole globe with a temperature sensor or water vapor [sensor] or those sorts of things, so I’ve always focused on using satellite observations, and in particular I’ve been focusing on the exchange of energy.
Basically, what drives the climate is the incoming energy from the sun and how that’s balanced by the thermal energy that the Earth emits. One of the big influencers of that balance are clouds — they reflect the sunlight, but they also have a greenhouse effect of their own; they trap the thermal energy emitted. So I’ve spent most of my career trying to understand the effects of clouds on the climate and how that might change if the climate warms.
And what’s the goal of this particular mission?
One of the fastest changing regions on Earth right now is the polar regions — I think a lot of people are aware of that. Normally, the polar regions are very cold — they reflect a lot of sunlight just because of the ice surface. But as the ice surface melts, the ocean is a lot darker than ice, and so [the poles] can actually absorb more of the solar radiation that’s coming in.
A lot of people say, “Well, okay, but that’s the Arctic. I don’t live there.” But the way the climate works is that in order to create an equilibrium between these really, really cold polar caps and the really, really warm tropics. It’s just like heating the end of a rod — the rod is going to transfer some of the heat from the hot end to the cold end to establish an equilibrium between them. The Earth does the same thing, but the way it does that is through our weather systems. So basically, how cold the polar region is versus the equator is what’s going to govern how severe our weather is in the mid-latitudes.
What we’re trying to do is make measurements of, basically, how that thermal energy is distributed. We just have a lack of understanding right now — or it’s more that the understanding comes from isolated, individual field projects, and what we really want to do is map out the whole Arctic and understand all of the different regions and how it’s changing.
How do you expect your findings to influence our climate models? Or how significantly do you expect them to affect the climate models?
This is quite unusual for a satellite project, we actually have climate modelers as part of our team. There’s the people that take, for example, the Greenland ice sheet, and they model things like the melting of the ice, how heat transports into the ice sheet, how the water once it melts percolates through the ice and then runs off at the bottom of the glacier, or even on top of the glacier. And then I have a general climate modeling group that basically uses climate models to project future climate.
There’s two ways that's going to happen. The first is we’ve developed a tool that allows us to kind of simulate what our satellite would see if it was flying in a climate model as opposed to around the real Earth — we can simulate exactly what the climate model is suggesting the satellite should see. And then of course, we’re making the real observations with the satellite. We can compare the two and evaluate, in today’s climate, how well is that climate model reproducing what the satellites see?
The other way is we’re going to generate models of how much heat comes off of various surfaces — ice surfaces, water surfaces, snow surfaces — and that information can be used to create a new module that goes right into the climate model and improves the way it represents the surface.
So what do these satellites look like and how do they work?
Our satellite is called a CubeSat. It’s not very big at all, maybe a foot wide, a foot-and-a-half or so long. There’s a little aperture, a little hole on the end of the satellite that lets the thermal energy from the Earth go in, and then the the rest of the satellite is basically just this big box that has a radio and a transmitter. In total, I think the whole thing weighs about 15 kilograms.
Because it's relatively small and relatively inexpensive, we're actually able to have two of those instead of just having one, and what that lets us do is put them into different orbits. At some point that will cross and see the same spot on the ground — let’s say somewhere in the center of Greenland — but up to eight or nine hours apart. Let’s say it melts in between, we’ll be able to understand how that melting process affected the heat that was emitted from the surface into the atmosphere.
How big of a deal do you think this is? Or how big of a deal do you think it could be?
There’s more than a couple of aspects to this. To really segue from the last question to this one, the reason [the satellites are] inexpensive, it’s not that they’re low-quality. It’s actually because they’re very uniform sizes and shapes. You can mass produce them. And so it’s that fact, coupled with the fact that we can now do real science on this small platform. We’ve been able to miniaturize the technology. If we can keep demonstrating that these missions are viable and producing realistic science data, this could be the future of the field.
Coming back to the polar climate, we absolutely know that the poles are warming at a very alarming rate. We know that the ice sheets are melting. We know that this has implications for the weather in the lower latitudes where we live, and for sea level. But when you try to predict that 100 years from now, there’s quite a range of different answers, from very catastrophic to still pretty bad. Depending on which of those answers is correct, it really dictates what we need to do today. How quickly do we need to adapt to a rising sea level, or to stronger storms or more frequent storms? After this mission, we will be able to improve the climate models in such a way that we’ll have a narrower range of possibilities.
The other thing that’s exciting is also just the unknown. There’s always new things that you learn by measuring something for the first time. We might learn something about the tropics, we might learn something about the upper atmosphere. There are some people in mountainous areas that are quite interested in the measurements — at the top of mountains, it’s actually quite similar in climate to the Arctic. So I’m also really excited about what happens when the science community in general explores that data for the first time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Alphabet and Amazon each plan to spend a small-country-GDP’s worth of money this year.
Big tech is spending big on data centers — which means it’s also spending big on power.
Alphabet, the parent company of Google, announced Wednesday that it expects to spend $175 billion to $185 billion on capital expenditures this year. That estimate is about double what it spent in 2025, far north of Wall Street’s expected $121 billion, and somewhere between the gross domestic products of Ecuador and Morocco.
This is a “a massive investment in absolute terms,” Jefferies analyst Brent Thill wrote in a note to clients Thursday. “Jarringly large,” Guggenheim analyst Michael Morris wrote. With this announcement, total expected capital expenditures by Alphabet, Microsoft and Meta for 2026 are at $459 billion, according to Jefferies calculations — roughly the GDP of South Africa. If Alphabet’s spending comes in at the top end of its projected range, that would be a third larger than the “total data center spend across the 6 largest players only 3 years ago,” according to Brian Nowak, an analyst at Morgan Stanley.
And that was before Thursday, when Amazon told investors that it expects to spend “about $200 billion” on capital expenditures this year.
For Alphabet, this growth in capital expenditure will fund data center development to serve AI demand, just as it did last year. In 2025, “the vast majority of our capex was invested in technical infrastructure, approximately 60% of that investment in servers, and 40% in data centers and networking equipment,” chief financial officer Anat Ashkenazi said on the company’s earnings call.
The ramp up in data center capacity planned by the tech giants necessarily means more power demand. Google previewed its immense power needs late last year when it acquired the renewable developer Intersect for almost $5 billion.
When asked by an analyst during the company’s Wednesday earnings call “what keeps you up at night,” Alphabet chief executive Sundar Pichai said, “I think specifically at this moment, maybe the top question is definitely around capacity — all constraints, be it power, land, supply chain constraints. How do you ramp up to meet this extraordinary demand for this moment?”
One answer is to contract with utilities to build. The utility and renewable developer NextEra said during the company’s earnings call last week that it plans to bring on 15 gigawatts worth of power to serve datacenters over the next decade, “but I'll be disappointed if we don't double our goal and deliver at least 30 gigawatts through this channel by 2035,” NextEra chief executive John Ketchum said. (A single gigawatt can power about 800,000 homes).
The largest and most well-established technology companies — the Microsofts, the Alphabets, the Metas, and the Amazons — have various sustainability and clean energy commitments, meaning that all sorts of clean power (as well as a fair amount of natural gas) are likely to get even more investment as data center investment ramps up.
Jefferies analyst Julien Dumoulin-Smith described the Alphabet capex figure as “a utility tailwind,” specifically calling out NextEra, renewable developer Clearway Energy (which struck a $2.4 billion deal with Google for 1.2 gigawatts worth of projects earlier this year), utility Entergy (which is Google’s partner for $4 billion worth of projects in Arkansas), Kansas-based utility Evergy (which is working on a data center project in Kansas City with Google), and Wisconsin-based utility Alliant (which is working on data center projects with Google in Iowa).
If getting power for its data centers keeps Pichai up at night, there’s no lack of utility executives willing to answer his calls.
The offshore wind industry is now five-for-five against Trump’s orders to halt construction.
District Judge Royce Lamberth ruled Monday morning that Orsted could resume construction of the Sunrise Wind project off the coast of New England. This wasn’t a surprise considering Lamberth has previously ruled not once but twice in favor of Orsted continuing work on a separate offshore energy project, Revolution Wind, and the legal arguments were the same. It also comes after the Trump administration lost three other cases over these stop work orders, which were issued without warning shortly before Christmas on questionable national security grounds.
The stakes in this case couldn’t be more clear. If the government were to somehow prevail in one or more of these cases, it would potentially allow agencies to shut down any construction project underway using even the vaguest of national security claims. But as I have previously explained, that behavior is often a textbook violation of federal administrative procedure law.
Whether the Trump administration will appeal any of these rulings is now the most urgent question. There have been no indications that the administration intends to do so, and a review of the federal dockets indicates nothing has been filed yet.
The Department of Justice declined to comment on whether it would seek to appeal any or all of the rulings.
Editor’s note: This story has been updated to reflect that the administration declined to comment.
A new PowerLines report puts the total requested increases at $31 billion — more than double the number from 2024.
Utilities asked regulators for permission to extract a lot more money from ratepayers last year.
Electric and gas utilities requested almost $31 billion worth of rate increases in 2025, according to an analysis by the energy policy nonprofit PowerLines released Thursday morning, compared to $15 billion worth of rate increases in 2024. In case you haven’t already done the math: That’s more than double what utilities asked for just a year earlier.
Utilities go to state regulators with its spending and investment plans, and those regulators decide how much of a return the utility is allowed to glean from its ratepayers on those investments. (Costs for fuel — like natural gas for a power plant — are typically passed through to customers without utilities earning a profit.) Just because a utility requests a certain level of spending does not mean that regulators will approve it. But the volume and magnitude of the increases likely means that many ratepayers will see higher bills in the coming year.
“These increases, a lot of them have not actually hit people's wallets yet,” PowerLines executive director Charles Hua told a group of reporters Wednesday afternoon. “So that shows that in 2026, the utility bills are likely to continue to rise, barring some major, sweeping action.” Those could affect some 81 million consumers, he said.
Electricity prices have gone up 6.7% in the past year, according to the Bureau of Labor Statistics, outpacing overall prices, which have risen 2.7%. Electricity is 37% more expensive today than it was just five years ago, a trend researchers have attributed to geographically specific factors such as costs arising from wildfires attributed to faulty utility equipment, as well as rising costs for maintaining and building out the grid itself.
These rising costs have become increasingly politically contentious, with state and local politicians using electricity markets and utilities as punching bags. Newly elected New Jersey Governor Mikie Sherrill’s first two actions in office, for instance, were both aimed at effecting a rate freeze proposal that was at the center of her campaign.
But some of the biggest rate increase requests from last year were not in the markets best known for high and rising prices: the Northeast and California. The Florida utility Florida Power and Light received permission from state regulators for $7 billion worth of rate increases, the largest such increase among the group PowerLines tracked. That figure was negotiated down from about $10 billion.
The PowerLines data is telling many consumers something they already know. Electricity is getting more expensive, and they’re not happy about it.
“In a moment where affordability concerns and pocketbook concerns remain top of mind for American consumers, electricity and gas are the two fastest drivers,” Hua said. “That is creating this sense of public and consumer frustration that we're seeing.”