You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Ice is melting — but what does that mean for climate science?
As is usually the case, one of the most basic questions in climate science has also been one of the most difficult to answer: How much energy is the Earth sending out into space? The pair of shoebox-sized satellites that comprise PREFIRE — Polar Radiant Energy in the Far-InfraRed Experiment — could very well provide the answer.
Principal investigator Tristan L’Ecuyer, a professor in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin-Madison and the director of the Cooperative Institute for Meteorological Satellite Studies, spoke with Heatmap about PREFIRE. Tentatively scheduled to launch in May, the project stands not only to make future climate models more accurate, but could also help shape a new generation of atmospheric exploration.
The interview has been edited for length and clarity.
Could you tell me a little bit about your research and the work that you do?
A lot of our climate information comes from models — where I come in is trying to make sure that those predictions are rooted in actual observations of our planet. But it’s impossible to cover the whole globe with a temperature sensor or water vapor [sensor] or those sorts of things, so I’ve always focused on using satellite observations, and in particular I’ve been focusing on the exchange of energy.
Basically, what drives the climate is the incoming energy from the sun and how that’s balanced by the thermal energy that the Earth emits. One of the big influencers of that balance are clouds — they reflect the sunlight, but they also have a greenhouse effect of their own; they trap the thermal energy emitted. So I’ve spent most of my career trying to understand the effects of clouds on the climate and how that might change if the climate warms.
And what’s the goal of this particular mission?
One of the fastest changing regions on Earth right now is the polar regions — I think a lot of people are aware of that. Normally, the polar regions are very cold — they reflect a lot of sunlight just because of the ice surface. But as the ice surface melts, the ocean is a lot darker than ice, and so [the poles] can actually absorb more of the solar radiation that’s coming in.
A lot of people say, “Well, okay, but that’s the Arctic. I don’t live there.” But the way the climate works is that in order to create an equilibrium between these really, really cold polar caps and the really, really warm tropics. It’s just like heating the end of a rod — the rod is going to transfer some of the heat from the hot end to the cold end to establish an equilibrium between them. The Earth does the same thing, but the way it does that is through our weather systems. So basically, how cold the polar region is versus the equator is what’s going to govern how severe our weather is in the mid-latitudes.
What we’re trying to do is make measurements of, basically, how that thermal energy is distributed. We just have a lack of understanding right now — or it’s more that the understanding comes from isolated, individual field projects, and what we really want to do is map out the whole Arctic and understand all of the different regions and how it’s changing.
How do you expect your findings to influence our climate models? Or how significantly do you expect them to affect the climate models?
This is quite unusual for a satellite project, we actually have climate modelers as part of our team. There’s the people that take, for example, the Greenland ice sheet, and they model things like the melting of the ice, how heat transports into the ice sheet, how the water once it melts percolates through the ice and then runs off at the bottom of the glacier, or even on top of the glacier. And then I have a general climate modeling group that basically uses climate models to project future climate.
There’s two ways that's going to happen. The first is we’ve developed a tool that allows us to kind of simulate what our satellite would see if it was flying in a climate model as opposed to around the real Earth — we can simulate exactly what the climate model is suggesting the satellite should see. And then of course, we’re making the real observations with the satellite. We can compare the two and evaluate, in today’s climate, how well is that climate model reproducing what the satellites see?
The other way is we’re going to generate models of how much heat comes off of various surfaces — ice surfaces, water surfaces, snow surfaces — and that information can be used to create a new module that goes right into the climate model and improves the way it represents the surface.
So what do these satellites look like and how do they work?
Our satellite is called a CubeSat. It’s not very big at all, maybe a foot wide, a foot-and-a-half or so long. There’s a little aperture, a little hole on the end of the satellite that lets the thermal energy from the Earth go in, and then the the rest of the satellite is basically just this big box that has a radio and a transmitter. In total, I think the whole thing weighs about 15 kilograms.
Because it's relatively small and relatively inexpensive, we're actually able to have two of those instead of just having one, and what that lets us do is put them into different orbits. At some point that will cross and see the same spot on the ground — let’s say somewhere in the center of Greenland — but up to eight or nine hours apart. Let’s say it melts in between, we’ll be able to understand how that melting process affected the heat that was emitted from the surface into the atmosphere.
How big of a deal do you think this is? Or how big of a deal do you think it could be?
There’s more than a couple of aspects to this. To really segue from the last question to this one, the reason [the satellites are] inexpensive, it’s not that they’re low-quality. It’s actually because they’re very uniform sizes and shapes. You can mass produce them. And so it’s that fact, coupled with the fact that we can now do real science on this small platform. We’ve been able to miniaturize the technology. If we can keep demonstrating that these missions are viable and producing realistic science data, this could be the future of the field.
Coming back to the polar climate, we absolutely know that the poles are warming at a very alarming rate. We know that the ice sheets are melting. We know that this has implications for the weather in the lower latitudes where we live, and for sea level. But when you try to predict that 100 years from now, there’s quite a range of different answers, from very catastrophic to still pretty bad. Depending on which of those answers is correct, it really dictates what we need to do today. How quickly do we need to adapt to a rising sea level, or to stronger storms or more frequent storms? After this mission, we will be able to improve the climate models in such a way that we’ll have a narrower range of possibilities.
The other thing that’s exciting is also just the unknown. There’s always new things that you learn by measuring something for the first time. We might learn something about the tropics, we might learn something about the upper atmosphere. There are some people in mountainous areas that are quite interested in the measurements — at the top of mountains, it’s actually quite similar in climate to the Arctic. So I’m also really excited about what happens when the science community in general explores that data for the first time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The state’s senior senator, Thom Tillis, has been vocal about the need to maintain clean energy tax credits.
The majority of voters in North Carolina want Congress to leave the Inflation Reduction Act well enough alone, a new poll from Data for Progress finds.
The survey, which asked North Carolina voters specifically about the clean energy and climate provisions in the bill, presented respondents with a choice between two statements: “The IRA should be repealed by Congress” and “The IRA should be kept in place by Congress.” (“Don’t know” was also an option.)
The responses from voters broke down predictably along party lines, with 71% of Democrats preferring to keep the IRA in place compared to just 31% of Republicans, with half of independent voters in favor of keeping the climate law. Overall, half of North Carolina voters surveyed wanted the IRA to stick around, compared to 37% who’d rather see it go — a significant spread for a state that, prior to the passage of the climate law, was home to little in the way of clean energy development.
But North Carolina now has a lot to lose with the potential repeal of the Inflation Reduction Act, as my colleague Emily Pontecorvo has pointed out. The IRA brought more than 17,000 jobs to the state, per Climate Power, along with $20 billion in investment spread out over 34 clean energy projects. Electric vehicle and charging manufacturers in particular have flocked to the state, with Toyota investing $13.9 billion in its Liberty EV battery manufacturing facility, which opened this past April.
North Carolina Senator Thom Tillis was one of the four co-authors of a letter sent to Majority Leader John Thune in April advocating for the preservation of the law. Together, they wrote that gutting the IRA’s tax credits “would create uncertainty, jeopardizing capital allocation, long-term project planning, and job creation in the energy sector and across our broader economy.” It seems that the majority of North Carolina voters are aligned with their senator — which is lucky for him, as he’s up for reelection in 2026.
SpaceX has also now been dragged into the fight.
The value of Tesla shares went into freefall Thursday as its chief executive Elon Musk traded insults with President Donald Trump. The war of tweets (and Truths) began with Musk’s criticism of the budget reconciliation bill passed by the House of Representatives and has escalated to Musk accusing Trump of being “in the Epstein files,” a reference to the well-connected financier Jeffrey Epstein, who died in federal detention in 2019 while awaiting trial on sex trafficking charges.
The conflict had been escalating steadily in the week since Musk formally departed the Trump administration with what was essentially a goodbye party in the Oval Office, during which Musk was given a “key” to the White House.
Musk has since criticized the reconciliation bill for not cutting spending enough, and for slashing credits for electric vehicles and renewable energy while not touching subsidies for oil and gas. “Keep the EV/solar incentive cuts in the bill, even though no oil & gas subsidies are touched (very unfair!!), but ditch the MOUNTAIN of DISGUSTING PORK in the bill,” Musk wrote on X Thursday afternoon. He later posted a poll asking “Is it time to create a new political party in America that actually represents the 80% in the middle?”
Tesla shares were down around 5% early in the day but recovered somewhat by noon, only to nosedive again when Trump criticized Musk during a media availability. The shares had fallen a total of 14% from the previous day’s close by the end of trading on Thursday, evaporating some $150 billion worth of Tesla’s market capitalization.
As Musk has criticized Trump’s bill, Trump and his allies have accused him of being sore over the removal of tax credits for the purchase of electric vehicles. On Tuesday, Speaker of the House Mike Johnson described Musk’s criticism of the bill as “very disappointing,” and said the electric vehicle policies were “very important to him.”
“I know that has an effect on his business, and I lament that,” Johnson said.
Trump echoed that criticism Thursday afternoon on Truth Social, writing, “Elon was ‘wearing thin,’ I asked him to leave, I took away his EV Mandate that forced everyone to buy Electric Cars that nobody else wanted (that he knew for months I was going to do!), and he just went CRAZY!” He added, “The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Governmental Subsidies and Contracts. I was always surprised that Biden didn’t do it!”
“In light of the President’s statement about cancellation of my government contracts, @SpaceX will begin decommissioning its Dragon spacecraft immediately,” Musk replied, referring to the vehicles NASA uses to ferry personnel and supplies to and from the International Space Station.
The company will use the seed funding to bring on more engineers — and customers.
As extreme weather becomes the norm, utilities are scrambling to improve the grid’s resilience, aiming to prevent the types of outages and infrastructure damage that often magnify the impact of already disastrous weather events. Those events cost the U.S. $182 billion in damages last year alone.
With the intensity of storms, heat waves, droughts, and wildfires growing every year, some utilities are now turning to artificial intelligence in their quest to adapt to new climate realities. Rhizome, which just announced a $6.5 million seed round, uses AI to help assess and prevent climate change-induced grid infrastructure vulnerabilities. It’s already working with utilities such as Avangrid, Seattle City Light, and Vermont Electric Power Company to do so.
“With a combination of utility system data and historical weather and hazard information, and then climate projection information, we can build a full profile of likelihood and consequence of failure at a very high resolution,” Rhizome co-founder and CEO Mish Thadani told me.
While utilities often have lots of data about the history of their assets and the surrounding landscape, there’s no real holistic system to bring together these disparate datasets and provide a simple overview of systemic risk across a range of different scenarios. Utilities usually rely on historical data to make decisions about their assets — a practice that’s increasingly unhelpful as climate change makes previously rare extreme weather events more likely.
Rhizome aims to solve both problems, serving as an integrated platform for risk assessment and mitigation that incorporates forward-looking climate modeling into its projections. The company measures its success against modeled counterfactuals that determine avoided power outages and the economic losses associated with these hypothetical blackouts. “So we can say the anticipated failure rate across the system for a Category 1 hurricane was X, and after you invest in the system, it will be Y,” Thadani told me. “Or if you’ve made a bunch of investments in the system, and you do experience a Category 1 hurricane, what would have been the failure rate had those investments not been made?”
This allows utilities to provide regulators with much more robust data to back up their funding requests. So while Thadani expects electricity prices to continue to rise and ratepayers to bear the burden, he told me that Rhizome can ultimately help regulators and utilities keep costs in check by making sure that every dollar spent on risk mitigation goes as far as possible.
Rhizome’s seed round, which came in oversubscribed, was led by the early-stage tech-focused venture firm Base10 Partners, which aims to automate traditional sectors of the economy. Additional funders include climate investors MCJ and CLAI, as well as the wildfire-focused venture firm Convective Capital. In addition to its standard risk assessment system, Rhizome has also developed a wildfire-specific risk mitigation tool. This quantifies not only how likely a hazard is to occur and its potential impact on utility infrastructure, but also the probability that an equipment failure would spark a wildfire, based on the geography of the area and historical ignition data.
Thadani told me that he considers evaluating wildfire risk “to be the next step in a sequence” as a utility evaluates the threats to its system overall. So while customers can choose to adopt either the standard product or the wildfire-specific product, many could gain utility from both, he said. The company has also developed a third offering specifically tailored for municipal and cooperative utilities. This more affordable system doesn’t provide the same machine learning-powered cost-benefit metrics, but can still help these smaller entities evaluate their infrastructure’s vulnerability.
Right now, Rhizome has a “lean and mighty” team of just 11 people, Thadani told me. With this latest raise, he said that the company will immediately hire five or six engineers, primarily to do further research and development. As Rhizome looks to onboard more and larger customers, it’s planning to incorporate more advanced modeling features into its platform and operate it increasingly autonomously, such that the model can retrain itself as new weather, climate, and utility data becomes available.
The company is out of the pilot phase with most of its customers, Thadani said, having signed multiple enterprise software contracts. That’s big, as utilities have gained a reputation for showing an initial appetite for testing innovative technologies, only to balk at the cost of full-scale deployment. Thadani told me Rhizome has been able to avoid this so-called “pilot purgatory” by making a point to engage with senior-level stakeholders at utilities — not just the innovation teams — to “graduate from that pilot ecosystem more quickly.”