You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Renewables are really popular. That’s not the problem.
Renewables are popular, and most Americans don’t mind living near them. That’s the message of an interesting new poll from The Washington Post and the University of Maryland, which found that about 70% of Americans would be comfortable living near a wind or solar farm “in their community.” Now, Americans slightly prefer solar over wind, and there’s a partisan gap among the respondents — 79% of Democrats are comfortable living near a wind farm, while only 59% of Republicans are — but overall the message is clear: Americans as a whole don’t mind living near a new renewables project.
It’s great to see this poll, and it adds to a growing and now, I think, unimpeachable body of research that shows renewables remain broadly popular in the United States. In March, a Heatmap poll found that 72% and 76% of Americans, respectively, would welcome utility-scale wind and solar in their communities. We found that the only more popular form of electricity generation was rooftop solar (which can’t solve climate change by itself), backed by nearly 9 in 10 Americans:
In June, the Pew Research Center found similar majorities in its polling, although it also noted that the partisan gap over renewables was continuing to widen. Only 60% of Republicans favor building more wind power today, according to Pew, as compared to 80% in 2016. (Over the same period, Democrats have become modestly more supportive of expanding wind.)
These polls are important. They demonstrate that renewable advocates can draw on a broad base of public support — or, at least, indifference — when fighting for policy. But I worry that they send the wrong message to environmentalists who are wondering about how best to move forward in the fight against climate change. Both the Post and Heatmap polls ask almost identical questions: Would you welcome a wind or solar farm in your community? But neither poll clarifies exactly what “your community” means.
Luckily, a recent study examines the question more deeply. In 2021, a team of researchers asked 4,500 people in America, Germany, and Ireland whether they would accept a new solar, wind, or fossil-fuel plant near them. Unlike other studies, it got specific: Would you accept a solar farm less than a mile from where you live? How about one to five miles away? How about more than five miles?
The study found very big majorities in support of wind and solar: 89% and 92% of Americans would welcome a new wind or solar facility near them at all. But the closer that the project got to their house, the less they favored it. Only 17% of Americans would welcome wind turbines within a mile of their home. About half would approve of wind turbines within five miles. By comparison, about a third of Germans would welcome wind turbines within 0.6 miles of their home (that is, a kilometer), and two-thirds of Germans would within three miles.
In the study, solar was more popular than wind — 57% of Americans would welcome solar panels within five miles of their home — but, still, it didn’t see the kind of commanding majorities you’d expect from Heatmap and the Post’s polling. In fact, I think this study tells an entirely different story from those polls: that Americans are pretty skeptical of new renewable projects in their backyards. (The bright spot for climate advocates is that a much smaller ratio of Americans support the construction of a new natural gas plant within five miles of their homes.)
That 2021 study suggests that a small minority — and in some cases, an outright majority — might oppose a given renewable project depending on how close it is to a residential area. And as I’ve previously written, American laws today give even a small, well-resourced minority plenty of tools to block a project. They can hold up a project in lawsuits or bog it down in paperwork. And what’s more, once that small group starts campaigning against a project, the public’s broad but shallow support for, say, a general technology can crater. That’s what happened recently in New Jersey, where a once broadly pro-wind public has turned against four proposed offshore wind farms.
Is this the biggest problem for renewable advocates? I’m not sure: America will build plenty of new solar projects this year anyway. But it is a problem. And it should be clear by now that broad public opinion does not mean much for our land-use politics. The problem is not that the public opposes wind and solar; the problem is that a few dozen people can block or waylay a project no matter how the broader public feels. If that feels anti-democratic, then climate advocates need to do something about it.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The company will use the seed funding to bring on more engineers — and customers.
As extreme weather becomes the norm, utilities are scrambling to improve the grid’s resilience, aiming to prevent the types of outages and infrastructure damage that often magnify the impact of already disastrous weather events. Those events cost the U.S. $182 billion in damages last year alone.
With the intensity of storms, heat waves, droughts, and wildfires growing every year, some utilities are now turning to artificial intelligence in their quest to adapt to new climate realities. Rhizome, which just announced a $6.5 million seed round, uses AI to help assess and prevent climate change-induced grid infrastructure vulnerabilities. It’s already working with utilities such as Avangrid, Seattle City Light, and Vermont Electric Power Company to do so.
“With a combination of utility system data and historical weather and hazard information, and then climate projection information, we can build a full profile of likelihood and consequence of failure at a very high resolution,” Rhizome co-founder and CEO Mish Thadani told me.
While utilities often have lots of data about the history of their assets and the surrounding landscape, there’s no real holistic system to bring together these disparate datasets and provide a simple overview of systemic risk across a range of different scenarios. Utilities usually rely on historical data to make decisions about their assets — a practice that’s increasingly unhelpful as climate change makes previously rare extreme weather events more likely.
Rhizome aims to solve both problems, serving as an integrated platform for risk assessment and mitigation that incorporates forward-looking climate modeling into its projections. The company measures its success against modeled counterfactuals that determine avoided power outages and the economic losses associated with these hypothetical blackouts. “So we can say the anticipated failure rate across the system for a Category 1 hurricane was X, and after you invest in the system, it will be Y,” Thadani told me. “Or if you’ve made a bunch of investments in the system, and you do experience a Category 1 hurricane, what would have been the failure rate had those investments not been made?”
This allows utilities to provide regulators with much more robust data to back up their funding requests. So while Thadani expects electricity prices to continue to rise and ratepayers to bear the burden, he told me that Rhizome can ultimately help regulators and utilities keep costs in check by making sure that every dollar spent on risk mitigation goes as far as possible.
Rhizome’s seed round, which came in oversubscribed, was led by the early-stage tech-focused venture firm Base10 Partners, which aims to automate traditional sectors of the economy. Additional funders include climate investors MCJ and CLAI, as well as the wildfire-focused venture firm Convective Capital. In addition to its standard risk assessment system, Rhizome has also developed a wildfire-specific risk mitigation tool. This quantifies not only how likely a hazard is to occur and its potential impact on utility infrastructure, but also the probability that an equipment failure would spark a wildfire, based on the geography of the area and historical ignition data.
Thadani told me that he considers evaluating wildfire risk “to be the next step in a sequence” as a utility evaluates the threats to its system overall. So while customers can choose to adopt either the standard product or the wildfire-specific product, many could gain utility from both, he said. The company has also developed a third offering specifically tailored for municipal and cooperative utilities. This more affordable system doesn’t provide the same machine learning-powered cost-benefit metrics, but can still help these smaller entities evaluate their infrastructure’s vulnerability.
Right now, Rhizome has a “lean and mighty” team of just 11 people, Thadani told me. With this latest raise, he said that the company will immediately hire five or six engineers, primarily to do further research and development. As Rhizome looks to onboard more and larger customers, it’s planning to incorporate more advanced modeling features into its platform and operate it increasingly autonomously, such that the model can retrain itself as new weather, climate, and utility data becomes available.
The company is out of the pilot phase with most of its customers, Thadani said, having signed multiple enterprise software contracts. That’s big, as utilities have gained a reputation for showing an initial appetite for testing innovative technologies, only to balk at the cost of full-scale deployment. Thadani told me Rhizome has been able to avoid this so-called “pilot purgatory” by making a point to engage with senior-level stakeholders at utilities — not just the innovation teams — to “graduate from that pilot ecosystem more quickly.”
Add it to the evidence that China’s greenhouse gas emissions may be peaking, if they haven’t already.
Exactly where China is in its energy transition remains somewhat fuzzy. Has the world’s largest emitter of greenhouse gases already hit peak emissions? Will it in 2025? That remains to be seen. But its import data for this year suggests an economy that’s in a rapid transition.
According to government trade data, in the first fourth months of this year, China imported $12.1 billion of coal, $100.4 billion of crude oil, and $18 billion of natural gas. In terms of value, that’s a 27% year over year decline in coal, a 8.5% decline in oil, and a 15.7% decline in natural gas. In terms of volume, it was a 5.3% decline, a slight 0.5% increase, and a 9.2% decline, respectively.
“Fossil fuel demand still trends down,” Lauri Myllyvirta, the co-founder of the Centre for Research on Energy and Clean Air, wrote on X in response to the news.
Morgan Stanley analysts predicted Friday in a note to clients that this “weak downstream demand” for coal in China would “continue to hinder coal import volume.”
Another piece of China’s emissions and coal usage puzzle came from Indonesia, which is a major coal exporter. Citing data from trade data service Kpler, Reuters reported Friday that Indonesia’s thermal coal exports “have dropped to their lowest in three years” thanks to “weak demand in China and India,” the world’s two biggest coal importers. Indonesia’s thermal coal exports dropped 12% annually to 150 million tons in the first third of the year, Reuters reported.
China’s official goal is to hit peak emissions by 2030 and reach “carbon neutrality” by 2060. The country’s electricity grid is largely fueled by coal (with hydropower coming in at number two), as is its prolific production of steel and cement, which is energy and, specifically, coal-intensive. For a few years in the 2010s, more cement was poured in China than in the whole 20th century in the United States. China also accounts for about half of the world’s steel production.
At the same time, China’s electricity demand growth is being largely met by renewables, implying that China can expand its economy without its economy-wide, annual emissions going up. This is in part due to a massive deployment of renewables. In 2023, China installed enough non-carbon-emitting electricity generation to meet the total electricity demand of all of France.
China’s productive capacity has shifted in a way that’s less carbon intensive, experts on the Chinese energy system and economy have told Heatmap. The economy isshifting more toward manufacturing and away from the steel-and-cement intensive breakneck urbanization of the past few decades, thanks to a dramatically slowing homebuilding sector.
Chinese urban residential construction was using almost 300 million tons of steel per year at its peak in 2019, according to research by the Reserve Bank of Australia, about a third of the country’s total steel usage. (Steel consumption for residential construction would fall by about half by 2023.) By contrast, the whole United States economy consumes less than 100 million tons of steel per year.
To the extent the overall Chinese economy slows down due to the trade war with the United States, coal usage — and thus greenhouse gas emissions — would slow as well. Although that hasn’t happened yet — China also released export data on Friday that showed sustained growth, in spite of the tariff barriers thrown up by the Trump administration.
The nonprofit laid off 36 employees, or 28% of its headcount.
The Trump administration’s funding freeze has hit the leading electrification nonprofit Rewiring America, which announced Thursday that it will be cutting its workforce by 28%, or 36 employees. In a letter to the team, the organization’s cofounder and CEO Ari Matusiak placed the blame squarely on the Trump administration’s attempts to claw back billions in funding allocated through the Greenhouse Gas Reduction Fund.
“The volatility we face is not something we created: it is being directed at us,” Matusiak wrote in his public letter to employees. Along with a group of four other housing, climate, and community organizations, collectively known as Power Forward Communities, Rewiring America was the recipient of a $2 billion GGRF grant last April to help decarbonize American homes.
Now, the future of that funding is being held up in court. GGRF funds have been frozen since mid-February as Lee Zeldin’s Environmental Protection Agency has tried to rescind $20 billion of the program’s $27 billion total funding, an effort that a federal judge blocked in March. While that judge, Tanya S. Chutkan, called the EPA’s actions “arbitrary and capricious,” for now the money remains locked up in a Citibank account. This has wreaked havoc on organizations such as Rewiring America, which structured projects and staffing decisions around the grants.
“Since February, we have been unable to access our competitively and lawfully awarded grant dollars,” Matusiak wrote in a LinkedIn post on Thursday. “We have been the subject of baseless and defamatory attacks. We are facing purposeful volatility designed to prevent us from fulfilling our obligations and from delivering lower energy costs and cheaper electricity to millions of American households across the country.”
Matusiak wrote that while “Rewiring America is not going anywhere,” the organization is planning to address said volatility by tightening its focus on working with states to lower electricity costs, building a digital marketplace for households to access electric upgrades, and courting investment from third parties such as hyperscale cloud service providers, utilities, and manufacturers. Matusiak also said Rewiring America will be restructured “into a tighter formation,” such that it can continue to operate even if the GGRF funding never comes through.
Power Forward Communities is also continuing to fight for its money in court. Right there with it are the Climate United Fund and the Coalition for Green Capital, which were awarded nearly $7 billion and $5 billion, respectively, through the GGRF.
What specific teams within Rewiring America are being hit by these layoffs isn’t yet clear, though presumably everyone let go has already been notified. As the announcement went live Thursday afternoon, it stated that employees “will receive an email within the next few minutes informing you of whether your role has been impacted.”
“These are volatile and challenging times,” Matusiak wrote on LinkedIn. “It remains on all of us to create a better world we can all share. More so than ever.”