You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
With its Orchard One project in Wyoming, Spiritus thinks it can capture carbon from the air for less than $100 per ton.
Pretty much every startup that’s building machines to suck carbon dioxide from the atmosphere and stash it underground has claimed it will be able to get its costs down to less than $100 per ton — eventually.
But a new contender in the race, a San Francisco-based company called Spiritus, is making a compelling case that it could get there faster. On Tuesday, Spiritus announced plans to build its first direct air capture, or “DAC” project in central Wyoming, nicknamed Orchard One. The company will start small but ultimately wants to expand the facility to capture 2 million tons of CO2 per year.
Achieving that scale at the sub-$100 price point would be game-changing for direct air capture, which is still far too expensive to be a viable climate solution. Most companies in the field are cagey about revealing their current costs, but the industry-average price is believed to be between $600 and $1,000 per ton.
So what makes Spiritus different? Here are three reasons we’ll be keeping an eye on the company.
Spiritus’ project will not look anything like the industrial-style shipping containers full of fans that have become the defining form factor for DAC plants. The company’s central innovation is a squishy white ball that founder Charles Cadieu describes as an artificial lung.
“While it looks kind of simple, it's actually a breakthrough material that has an incredible amount of surface area,” he told me over Zoom, while holding one up and squeezing it like a stress relief toy. “And it has holes all over it that allow the CO2 to go right inside.” Though it’s about the size of a tennis ball, its branch-like interior structure has a surface area equivalent to a tennis court, he said.
Courtesy of Spiritus
The ball is made of a proprietary material that selectively attracts CO2 molecules. As air wafts through it, CO2 sticks to its interior surfaces like a magnet. Spiritus will manufacture millions of these balls, lay them out on trays, and stack the trays on tree-like rigs — hence the name Orchard One. Concept images depict a small colony of cylindrical structures that will house the trays, almost like miniature Wilco towers, sprouting up amid the Wyoming sagebrush.
Courtesy of Spiritus
After a few hours exposed to the elements, the balls, which Spiritus prefers to call “fruits,” will be full of carbon. The company will then transfer them to a separate chamber and apply heat, causing them to expel the CO2. That stream of carbon will be compressed and delivered to an underground CO2 storage well, while the fruits will be returned to their towers to live the same day over and over again.
Though the concept is somewhat whimsical, the company is making serious claims about its cost and performance. The biggest expenses for direct air capture projects are materials and energy, and Spiritus has made significant improvements on both fronts. Cadieu told me they can manufacture their sorbent for a tenth of the cost of other, “state of the art sorbents that are out there today,” and that “furthermore, it’s 10 times as effective” at capturing carbon. In other words, Spiritus claims it can capture more carbon from the air at a time, using fewer, cheaper materials than other methods.
Since the capture part of the process is passive, the company doesn’t need to use energy-intensive fans to filter the air. Also, the temperature required for the second step, where heat is applied to the balls to release the CO2, is lower than 212 degrees Fahrenheit — low enough to be generated using electricity. Cadieu said Spiritus plans to procure energy from renewable sources so that the entire process has net-negative greenhouse gas emissions.
Spiritus isn’t the only company with a low-cost sorbent and passive capture method. Notably, the DAC process pioneered by Heirloom, which opened its first commercial-scale plant in California last year, shares those features, but it requires much higher temperatures — 1,650 degree Fahrenheit — to isolate the captured carbon.
Though Spiritus still has to prove this all works as promised in the real world, the company has earned an early vote of confidence from Frontier, the coalition of tech companies with a $1 billion fund to help carbon removal scale. Last year, Frontier paid Spiritus $500,000 to buy its first 713 removal credits, each of which represents a ton of carbon that will be permanently sequestered underground. (The money is more of a development grant than anything indicative of the company’s costs.)
“We look for companies that learn and iterate quickly, and we were impressed by what we saw from Spiritus when they applied,” Joanna Klitzke, the procurement and ecosystem strategy lead at Frontier, told me. “And actually, since then, the team has made really strong improvements and steady progress on both their sorbent and their process performance.”
According to the company’s application for funding from Frontier, Spiritus estimates that for the first phase of Orchard One — when the project is capturing less than 2,000 tons per year — its levelized cost per ton of carbon will be about $149, not including the cost of burying the carbon underground. By phase two, at a scale of about 500,000 tons per year, it expects to get that cost down to less than $100. And by phase three, at the full scale of 2 million tons per year, it expects to achieve sub-$75 capture.
Cadieu told me the company is already in talks with large buyers to purchase carbon removal from Orchard One for “far less” than the per-ton price Frontier paid.
Spiritus doesn’t expect to have phase one of the project up and running until 2026. But it already has a running start. The land lease is locked down, the underground pore space where the company will inject the captured carbon has been identified, and a monitoring well is already scheduled to be drilled — according to its Frontier application.
Wyoming has proved to be a relatively welcoming place for this emerging industry. Orchard One is joining another direct air capture plant already under development in the southwest part of the state called Project Bison. Cadieu gave three reasons the project landed there: There’s a local workforce with relevant experience from the oil and gas industry, the state has the ideal geology to trap the captured carbon underground, and Wyoming has been at the forefront of developing clear regulations for carbon sequestration. It was one of the first states to gain authorization from the Environmental Protection Agency to permit carbon storage wells, and as of December had already permitted three. Another advantage in Wyoming is abundant renewable energy from wind farms.
Spiritus has yet to reveal exactly where in Wyoming Orchard One will be built, but Cadieu told me he has been in close contact with officials at the town, county, and state levels, and that the reception has been enthusiastic. He said the project will create “hundreds of jobs during construction” and “many dozens of jobs” when the facility is operating, and that the company will deliver a portion of its profits back into the community.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration seems to be pursuing a “some of the above” strategy with little to no internal logic.
The Department of Energy justified terminating hundreds of congressionally-mandated grants issued by the Biden administration for clean energy projects last week (including for a backup battery at a children’s hospital) by arguing that they were bad investments for the American people.
“Following a thorough, individualized financial review, DOE determined that these projects did not adequately advance the nation’s energy needs, were not economically viable, and would not provide a positive return on investment of taxpayer dollars,” the agency’s press release said.
It’s puzzling, then, that the Trump administration is pouring vast government resources into saving aging coal plants and expediting advanced nuclear projects — two sources of energy that are famously financial black holes.
The Energy Department announced it would invest $625 million to “reinvigorate and expand America’s coal industry” in late September. Earlier this year, the agency also made $900 million available to “unlock commercial deployment of American-made small modular reactors.”
It’s hard to imagine what economic yardsticks would warrant funding to keep coal plants open. The cost of operating a coal plant in the U.S. has increased by nearly 30% since 2021 — faster than inflation — according to research by Energy Innovation. Driving that increase is the cost of coal itself, as well as the fact that the nation’s coal plants are simply getting very old and more expensive to maintain. “You can put all the money you want into a clunker, but at the end of the day, it’s really old, and it’s just going to keep getting more expensive over time, even if you have a short term fix,” Michelle Solomon, a program manager at Energy Innovation who authored the research, told me.
Keeping these plants online — even if they only operate some of the time— inevitably raises electricity bills. That’s because in many of the country’s electricity markets, the cost of power on any given day is determined by the most expensive plant running. On a hot summer day when everyone’s air conditioners are working hard and the grid operator has to tell a coal plant to switch on to meet demand, every electron delivered in the region will suddenly cost the same as coal, even if it was generated essentially for free by the sun or wind.
The Trump administration has also based its support for coal plants on the idea that they are needed for reliability. In theory, coal generation should be available around the clock. But in reality, the plants aren’t necessarily up to the task — and not just because they’re old. Sandy Creek in Texas, which began operating in 2013 and is the newest coal plant in the country, experienced a major failure this past April and is now expected to stay offline until 2027, according to the region’s grid operator. In a report last year, the North American Electric Reliability Corporation warned that outage rates for coal plants are increasing. This is in part due to wear and tear from the way these plants cycle on and off to accommodate renewable energy sources, the report said, but it’s also due to reduced maintenance as plant operators plan to retire the facilities.
“You can do the deferred maintenance. It might keep the plant operating for a bit longer, but at the end of the day, it’s still not going to be the most efficient source of energy, or the cheapest source of energy,” Solomon said.
The contradictions snowball from there. On September 30, the DOE opened a $525 million funding opportunity for coal plants titled “Restoring Reliability: Coal Recommissioning and Modernization,” inviting coal-fired power plants that are scheduled for retirement before 2032 or in rural areas to apply for grants that will help keep them open. The grant paperwork states that grid capacity challenges “are especially acute in regions with constrained transmission and sustained load growth.” Two days later, however, as part of the agency’s mass termination of grants, it canceled more than $1.3 billion in awards from the Grid Deployment Office to upgrade and install new transmission lines to ease those constraints.
The new funding opportunity may ultimately just shuffle awards around from one coal plant to another, or put previously-awarded projects through the time-and-money-intensive process of reapplying for the same funding under a new name. Up to $350 million of the total will go to as many as five coal plants, with initial funding to restart closed plants or to modernize old ones, and later phases designated for carbon capture, utilization, and storage retrofits. The agency said it will use “unobligated” money from three programs that were part of the 2021 Infrastructure Investment and Jobs Act: the Carbon Capture Demonstration Projects Program, the Carbon Capture Large-Scale Pilot Projects, and the Energy Improvements in Rural or Remote Areas Program.
In a seeming act of cognitive dissonance, however, the agency has canceled awards for two coal-fired power plants that the Biden administration made under those same programs. One, a $6.5 million grant to Navajo Transitional Energy Company, a tribal-owned entity that owns a stake in New Mexico’s Four Corners Generating Station, would have funded a study to determine whether adding carbon capture and storage to the plant was economically viable. The other, a $50 million grant to TDA Research that would have helped the company validate its CCS technology at Dry Fork Station, a coal plant in Wyoming, was terminated in May.
Two more may be out the window. A new internal agency list of grants labeled “terminate” that circulated this week included an $8 million grant for the utility Duke Energy to evaluate the feasibility of capturing carbon from its Edwardsport plant in Indiana, and $350 million for Project Tundra, a carbon capture demonstration project at the Milton R. Young Station in North Dakota.
“It’s not internally consistent,” Jack Andreason Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “You’re canceling coal grants, but then you’re giving $630 million to keep them open. You’re also investing a ton of time and money into nuclear — which is great, to be clear — but these small modular reactors haven’t been deployed in the United States, and part of the reason is that they’re currently not economically viable.”
The closest any company has come thus far to deploying a small modular reactor in the U.S. is NuScale, a company that planned to build its first-of-a-kind reactors in Idaho and had secured agreements to sell the power to a group of public utilities in Utah. But between 2015, when it was first proposed, and late 2023, when it died, the project’s budget tripled from $3 billion to more than $9 billion, while its scale was reduced from 600 megawatts to 462 megawatts. Not all of that was inevitable — costs rose dramatically in the final few years due to inflation. The reason NuScale ultimately pulled out of the project is that the cost of electricity it generated was going to be too high for the market to bear.
It’s unclear how heavily the DOE will weigh project financials in the application process for the $900 million for nuclear reactors. In its funding announcement, it specified that the awards would be made “solely based on technical merit.” The agency’s official solicitation paperwork, however, names “financial viability” as one of the key review criteria. Regardless, the Trump administration appears to recognize the value in funding first-of-a-kind, risky technologies when it comes to nuclear, but is not applying the same standards to direct air capture or hydrogen plants.
I asked the Department of Energy to share the criteria it used in the project review process to determine economic viability. In response, spokesperson Ben Dietderich encouraged me to read Wright’s memorandum describing the review process from May. The memo outlines what types of documentation the agency will evaluate to reach a decision, but not the criteria for making that decision.
Solomon agreed that advanced nuclear might one day meet the grid’s growing power needs, but not anytime soon. “Hopefully in the long term, this technology does become a part of our electricity system. But certainly relying on it in the short term has real risks to electricity costs,” she said. “And also reliability, in the sense that the projects might not materialize.”
The collateral damage from the Lava Ridge wind project might now include a proposed 285-mile transmission line initially approved by federal regulators in the 1990s.
The same movement that got Trump to kill the Lava Ridge wind farm Trump killed has appeared to derail a longstanding transmission project that’s supposed to connect sought-after areas for wind energy in Idaho to power-hungry places out West.
The Southwest Intertie Project-North, also known as SWIP-N, is a proposed 285-mile transmission line initially approved by federal regulators in the 1990s. If built, SWIP-N is supposed to feed power from the wind-swept plains of southern Idaho to the Southwest, while shooting electrons – at least some generated from solar power – back up north into Idaho from Nevada, Utah, and Arizona. In California, regulators have identified the line as crucial for getting cleaner wind energy into the state’s grid to meet climate goals.
But on Tuesday, SWIP-N suddenly faced a major setback: The three-person commission representing Jerome County, Idaho – directly in the path of the project – voted to revoke its special use permit, stating the company still lacked proper documentation to meet the terms and conditions of the approval. SWIP-N had the wind at its back as recently as last year, when LS Power expected it to connect to Lava Ridge and other wind farms that have been delayed by Trump’s federal permitting freeze on renewable energy. But now, the transmission line has stuttered along with this potential generation.
At a hearing Tuesday evening, county commissioners said Great Basin Transmission, a subsidiary of LS Power developing the line, would now suddenly need new input, including the blessing of the local highway district and potential feedback from the Federal Aviation Administration. Jerome County Commissioner Charles Howell explained to me Wednesday afternoon that there will still need to be formal steps remanding the permit, and the process will go back to local zoning officials. Great Basin Transmission will then at minimum need to get the sign-offs from local highway officials to satisfy his concerns, as well as those of the other commissioner who voted to rescind the permit, Ben Crouch.
The permit was many years old, and there are outstanding questions about what will happen next procedurally, including what Great Basin Transmission is actually able to do to fight this choice by the commissioners. At minimum, staff for the commission will write a formal decision explaining the reasoning and remand the permit. After that, it’ll be up to Great Basin Transmission to produce the documents that commissioners want. “Even our attorney and staff didn’t have those answers when we asked that after the vote,” Howell said, adding that he hopes the issues can be resolved. “I was on the county commission about when they decided where to site the towers, where to site the right-of-ways. That’s all been there a long time.”
This is the part where I bring up how Jerome County’s decision followed a months-long fight by aggrieved residents who opposed the SWIP-N line, including homeowners who say they didn’t know their properties were in the path of the project. There’s also a significant anti-wind undercurrent, as many who are fighting this transmission line previously fought LS Power’s Lava Ridge wind project, which was blocked by and executive order from President Donald Trump on his first day in office. Jerome County itself passed an ordinance in May requiring any renewable energy facility to get all federal, state, and local approvals before it would sign off on new projects.
Opposition to SWIP-N comes from a similar place as the “Stop Lava Ridge” campaign. Along with viewshed anxieties and property value impacts, SWIP-N, like Lava Ridge, would be within single-digit miles of the Minidoka National Historic Site, a former prison camp that held Japanese-Americans during World War II. In the eyes of its staunchest critics, constructing the wind farm would’ve completely damaged any impact of visiting the site by filling the surroundings of what is otherwise a serene, somber scene. Descendants of Minidoka detainees lobbied politicians at all levels to oppose Lava Ridge, a cause that was ultimately championed by Republican politicians in their fight against the project.
These same descendants of Japanese-American detainees have fought the transmission line, arguing that its construction would inevitably lead to new wind projects. “If approved, the SWIP-N line would enable LS Power and other renewable energy companies to build massive wind projects on federal land in and around Jerome County in future years,” wrote Dan Sakura, the son of a Minidoka prisoner, in a September 15 letter to the commission.
Sakura had been a leading voice in the fight against Lava Ridge. When I asked why he was weighing in on SWIP-N, he told me over text message, “The Lava Ridge wind project poisoned the well for renewable energy projects on federal land in Southern Idaho.”
LS Power did not respond to a request for comment.
It’s worth noting that efforts have already been made to avoid SWIP-N’s impacts to the Minidoka National Historic Site. In 2010, Congress required the Interior Secretary to re-do the review process for the transmission line, which at the time was proposed to go through the historic site. The route rejected by Jerome County would go around.
There is also no guarantee that wind energy will flock to southern Idaho any time soon. Yes, there’s a Trump permitting freeze, and federal wind energy tax credits are winding down. That’s almost certainly why the developers of small nuclear reactors have reportedly coveted the Lava Ridge site for future projects. But there’s also incredible hostility pent up against wind partially driven by the now-defunct LS Power project, for instance in Lincoln County, where officials now have an emergency moratorium banning wind energy while they develop a more permanent restrictive ordinance.
Howell made no bones about his own views on wind farms, telling me he prefers battery storage and nuclear power. “As I stand here in my backyard, if they put up windmills, that’s all I’m going to see for 40 miles,” he said
But Howell did confess to me that he thinks SWIP-N will ultimately be built – if the company is able to get these new sign-offs. What kind of energy flows through a transmission line cannot ultimately affect the decision on the special use permit because, he said, “there are rules.” On top of that, Idaho is going to ultimately need more power no matter what, and at the very least, the state will have to get electrons from elsewhere.
Howell’s “non-political” answer to the fate of SWIP-N, as he put it to me, is that “We live on power, so we gotta have more power.”
The week’s most important news around renewable project fights.
1. Western Nevada — The Esmeralda 7 solar mega-project may be no more.
2. Washoe County, Nevada – Elsewhere in Nevada, the Greenlink North transmission line has been delayed by at least another month.
3. Oconto County, Wisconsin – Solar farm town halls are now sometimes getting too scary for developers to show up at.
4. Apache County, Arizona – In brighter news, this county looks like it will give its first-ever conditional use permit for a large solar farm, EDF Renewables’ Juniper Spring project.
5. Putnam County, Indiana – After hearing about what happened here this week, I’m fearful for any solar developer trying to work in Indiana.
6. Tippecanoe County, Indiana – Two counties to the north of Putnam is a test case for the impacts a backlash on solar energy can have on data centers.