You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The effort to measure companies’ carbon footprints is remarkably imprecise — and suddenly more important than ever.

Large companies generate a gargantuan amount of carbon-dioxide pollution.
Take the big-box retailer Costco. During the financial year 2020, it emitted 144.5 million metric tons of carbon dioxide — a number on par with the Philippines’ annual emissions. Nike pumped out the equivalent of 11 million metric tons of carbon during the same period, a footprint roughly equal to Zimbabwe’s. Apple, meanwhile, was somewhere on the order of Estonia.
You’ve probably seen data like this before. But here’s a question: How do companies actually arrive at these numbers? How did Costco know its carbon footprint in 2020? Carbon dioxide and other climate-warming gases are invisible, potent even in trace amounts, and constantly absorbed and produced by hundreds of billions of different organisms and chemicals around the world. Costco alone directly or indirectly choreographs the actions of millions of people and things: sailors and longshoremen, factory workers and cotton farmers, employees coming in for their shift and marketing managers spending down an advertising budget.
How could a company like that possibly know its carbon footprint?
Here’s the sorry answer: Most companies don’t. They estimate.
Those estimates are suddenly looking more important. New laws and a proposal from the U.S. Securities and Exchange Commission could soon require that companies treat this data with the same seriousness that they devote to their accounting books. Companies now need their corporate climate data to do something that it was never meant to do: help them make decisions.
So the race is on to help companies estimate better. On Wednesday, Watershed, a startup that helps companies run their climate programs, bought VitalMetrics, a climate-data mainstay that owns and manages one of the most important tools that companies use to estimate their carbon footprints.
That tool, called the Comprehensive Environmental Data Archive, or CEDA, provides what’s known as carbon-intensity data for hundreds of products as made in more than 140 countries. It is one of several tools that has been used to advise Microsoft, Kellogg’s, and Virgin Atlantic since Sangwon Suh, an industrial-ecology professor and Intergovernmental Panel on Climate Change author, founded VitalMetrics in 2005.
Watershed’s acquisition of VitalMetrics signals that corporate climate data is entering a new stage, Taylor Francis, one of the company’s cofounders, told me. Watershed, at least, is a different kind of company than the climate bean counters of yore: Founded by former employees of the payments behemoth Stripe, it has raised $84 million from the venture-capital firms Kleiner Perkins, Sequoia Capital, as well as the billionaire Laurene Powell Jobs.
“The traditional corporate climate complex was basically designed for a world of numbers in the corporate social responsibility report, and a pledge, and a press release,” he said. ”We’re shifting to the new world of numbers in a 10-K,” the annual financial report that public companies must file with the government, “and a planet running out of time.”
I will admit I had it all wrong. I had assumed that because corporate carbon footprints sounded precise and vaguely science-adjacent, they were produced by something like a scientific methodology themselves. I imagined a company’s employees — or at least their consultants — collecting emissions data smokestack by smokestack, pacing around factories while studying air-quality monitors, and doing careful math somewhere in the vicinity of a bunsen burner or two. (I believed this, I should add, despite knowing that many corporate climate reports contain glaring arithmetic errors and sometimes literally do not add up.)
That sort of methodology is the “platonic ideal of carbon accounting,” Francis, the Watershed cofounder, told me. In a perfect world, a company would have measured the per-ton emissions of each of its processes, and it would know these for each of its suppliers down to the raw material.
Yet this is still a ways off for most companies. Instead, the bulk of carbon accounting today now happens in spreadsheets, and it uses dollars, not tons, as an input. Each consumer good or raw commodity aligns to a “factor,” a multiplier that says that for every dollar spent on, say, glass or aluminum, a certain amount of carbon is emitted. A climate team inputs the dollar amount, multiplies it by the factor, and arrives at a result: a company’s annual carbon footprint.
Until now, Watershed and other firms have often calculated corporate climate emissions by using a U.S. Environmental Protection Agency-made database called the Environmentally Extended Input-Output, or EEIO, model, Francis said. “You start with very coarse input data like, we spent $100 million on marketing. So you go to the old EEIO database, and the EEIO says that in the U.S. 10 years ago, the carbon emissions per dollar of marketing spend was X, and you multiply that to get your emissions number.”
“I think that gets you into the right order of magnitude,” he said, but it was messy. The EEIO data is roughly a decade out of date, meaning it overstates climate pollution from the power grid and understates the role of inflation.
VitalMetrics’ CEDA database, on the other hand, is updated every year. It contains carbon-intensity factors for more than 300 products and — most important — it varies these factors based on the country of origin. Going forward, Watershed will calculate corporate emissions data using these CEDA estimates.
This kind of data-gathering isn’t fine-tuned enough for companies to actually make better decisions with their data, Madison Condon, a law professor at Boston University who has criticized the reigning approach, told me. Under the current approach, a company can improve their carbon-accounting data only by shifting production to countries with lower emissions factors. It doesn’t get credit for, say, installing technologies at its existing factories that lower emissions.
That is unsustainable because corporate carbon accounting is becoming important to governments around the world. The Securities and Exchange Commission has proposed requiring publicly traded companies to disclose carbon data and major climate-related risks. Even if that rule is swatted away by the Supreme Court, the European Union will soon require tens of thousands of companies to disclose sustainability and emissions data; these rules could apply to more than 10,000 foreign companies, including many mainstream American brands. California could soon pass its own law mandating that companies produce carbon-accounting data.
Even apart from those disclosure requirements, carbon-footprint requirements are now written into laws. Some of the Inflation Reduction Act’s subsidies will pay out only if a product’s carbon intensity is below a certain threshold.
Eventually, Watershed hopes to produce a hybrid tool that can use dollar-based production factors, tonnage estimates, and technology-based improvements together, Francis told me. More broadly, Watershed’s acquisition of Vitalmetrics — not to mention Watershed itself — is a gamble about how the climate economy will eventually work.
“Five years from now, the disclosure piece is just part of the water. No one talks or writes about it because it is an expected part of doing business for every company. And it’s relatively low friction. It’s a part of your annual close, your quarterly close,” Francis told me. “We don’t really talk about climate as a political issue because businesses don't think of climate as a political issue because they see it as, you know, the biggest growth sector of the decade.”
Of course, if that’s true, then companies may not need a startup like Watershed to do their climate counting for them. Bog-standard corporate accountants, like KPMG or Deloitte, will do the task just fine.
But Watershed is betting that climate accounting will remain both more technical and more central to a company’s employee and investor relationships than, say, its power bill. Just as companies use Salesforce specifically to manage customer relationships, or Justworks to manage payroll and benefits, Watershed hopes they will need a single place to manage all their climate data — a single source of emissions truth. It’s investing in its database to try to make that bet payoff.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.