You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Over a dozen methane satellites are now circling the Earth — and more are on the way.

On Monday afternoon, a satellite the size of a washing machine hitched a ride on a SpaceX rocket and was launched into orbit. MethaneSAT, as the new satellite is called, is the latest to join more than a dozen other instruments currently circling the Earth monitoring emissions of the ultra-powerful greenhouse gas methane. But it won’t be the last. Over the next several months, at least two additional methane-detecting satellites from the U.S. and Japan are scheduled to join the fleet.
There’s a joke among scientists that there are so many methane-detecting satellites in space that they are reducing global warming — not just by providing essential data about emissions, but by blocking radiation from the sun.
So why do we keep launching more?
Despite the small army of probes in orbit, and an increasingly large fleet of methane-detecting planes and drones closer to the ground, our ability to identify where methane is leaking into the atmosphere is still far too limited. Like carbon dioxide, sources of methane around the world are numerous and diffuse. They can be natural, like wetlands and oceans, or man-made, like decomposing manure on farms, rotting waste in landfills, and leaks from oil and gas operations.
There are big, unanswered questions about methane, about which sources are driving the most emissions, and consequently, about tackling climate change, that scientists say MethaneSAT will help solve. But even then, some say we’ll need to launch even more instruments into space to really get to the bottom of it all.
Measuring methane from space only began in 2009 with the launch of the Greenhouse Gases Observing Satellite, or GOSAT, by Japan’s Aerospace Exploration Agency. Previously, most of the world’s methane detectors were on the ground in North America. GOSAT enabled scientists to develop a more geographically diverse understanding of major sources of methane to the atmosphere.
Soon after, the Environmental Defense Fund, which led the development of MethaneSAT, began campaigning for better data on methane emissions. Through its own, on-the-ground measurements, the group discovered that the Environmental Protection Agency’s estimates of leaks from U.S. oil and gas operations were totally off. EDF took this as a call to action. Because methane has such a strong warming effect, but also breaks down after about a decade in the atmosphere, curbing methane emissions can slow warming in the near-term.
“Some call it the low hanging fruit,” Steven Hamburg, the chief scientist at EDF leading the MethaneSAT project, said during a press conference on Friday. “I like to call it the fruit lying on the ground. We can really reduce those emissions and we can do it rapidly and see the benefits.”
But in order to do that, we need a much better picture than what GOSAT or other satellites like it can provide.
In the years since GOSAT launched, the field of methane monitoring has exploded. Today, there are two broad categories of methane instruments in space. Area flux mappers, like GOSAT, take global snapshots. They can show where methane concentrations are generally higher, and even identify exceptionally large leaks — so-called “ultra-emitters.” But the vast majority of leaks, big and small, are invisible to these instruments. Each pixel in a GOSAT image is 10 kilometers wide. Most of the time, there’s no way to zoom into the picture and see which facilities are responsible.

Point source imagers, on the other hand, take much smaller photos that have much finer resolution, with pixel sizes down to just a few meters wide. That means they provide geographically limited data — they have to be programmed to aim their lenses at very specific targets. But within each image is much more actionable data.
For example, GHGSat, a private company based in Canada, operates a constellation of 12 point-source satellites, each one about the size of a microwave oven. Oil and gas companies and government agencies pay GHGSat to help them identify facilities that are leaking. Jean-Francois Gauthier, the director of business development at GHGSat, told me that each image taken by one of their satellites is 12 kilometers wide, but the resolution for each pixel is 25 meters. A snapshot of the Permian Basin, a major oil and gas producing region in Texas, might contain hundreds of oil and gas wells, owned by a multitude of companies, but GHGSat can tell them apart and assign responsibility.
“We’ll see five, 10, 15, 20 different sites emitting at the same time and you can differentiate between them,” said Gauthier. “You can see them very distinctly on the map and be able to say, alright, that’s an unlit flare, and you can tell which company it is, too.” Similarly, GHGSat can look at a sprawling petrochemical complex and identify the exact tank or pipe that has sprung a leak.
But between this extremely wide-angle lens, and the many finely-tuned instruments pointing at specific targets, there’s a gap. “It might seem like there’s a lot of instruments in space, but we don’t have the kind of coverage that we need yet, believe it or not,” Andrew Thorpe, a research technologist at NASA’s Jet Propulsion Laboratory told me. He has been working with the nonprofit Carbon Mapper on a new constellation of point source imagers, the first of which is supposed to launch later this year.
The reason why we don’t have enough coverage has to do with the size of the existing images, their resolution, and the amount of time it takes to get them. One of the challenges, Thorpe said, is that it’s very hard to get a continuous picture of any given leak. Oil and gas equipment can spring leaks at random. They can leak continuously or intermittently. If you’re just getting a snapshot every few weeks, you may not be able to tell how long a leak lasted, or you might miss a short but significant plume. Meanwhile, oil and gas fields are also changing on a weekly basis, Joost de Gouw, an atmospheric chemist at the University of Colorado, Boulder, told me. New wells are being drilled in new places — places those point-source imagers may not be looking at.
“There’s a lot of potential to miss emissions because we’re not looking,” he said. “If you combine that with clouds — clouds can obscure a lot of our observations — there are still going to be a lot of times when we’re not actually seeing the methane emissions.”
De Gouw hopes MethaneSAT will help resolve one of the big debates about methane leaks. Between the millions of sites that release small amounts of methane all the time, and the handful of sites that exhale massive plumes infrequently, which is worse? What fraction of the total do those bigger emitters represent?
Paul Palmer, a professor at the University of Edinburgh who studies the Earth’s atmospheric composition, is hopeful that it will help pull together a more comprehensive picture of what’s driving changes in the atmosphere. Around the turn of the century, methane levels pretty much leveled off, he said. But then, around 2007, they started to grow again, and have since accelerated. Scientists have reached different conclusions about why.
“There’s lots of controversy about what the big drivers are,” Palmer told me. Some think it’s related to oil and gas production increasing. Others — and he’s in this camp — think it’s related to warming wetlands. “Anything that helps us would be great.”
MethaneSAT sits somewhere between the global mappers and point source imagers. It will take larger images than GHGSat, each one 200 kilometers wide, which means it will be able to cover more ground in a single day. Those images will also contain finer detail about leaks than GOSAT, but they won’t necessarily be able to identify exactly which facilities the smaller leaks are coming from. Also, unlike with GHGSat, MethaneSAT’s data will be freely available to the public.
EDF, which raised $88 million for the project and spent nearly a decade working on it, says that one of MethaneSAT’s main strengths will be to provide much more accurate basin-level emissions estimates. That means it will enable researchers to track the emissions of the entire Permian Basin over time, and compare it with other oil and gas fields in the U.S. and abroad. Many countries and companies are making pledges to reduce their emissions, and MethaneSAT will provide data on a relevant scale that can help track progress, Maryann Sargent, a senior project scientist at Harvard University who has been working with EDF on MethaneSAT, told me.

It could also help the Environmental Protection Agency understand whether its new methane regulations are working. It could help with the development of new standards for natural gas being imported into Europe. At the very least, it will help oil and gas buyers differentiate between products associated with higher or lower methane intensities. It will also enable fossil fuel companies who measure their own methane emissions to compare their performance to regional averages.
MethaneSAT won’t be able to look at every source of methane emissions around the world. The project is limited by how much data it can send back to Earth, so it has to be strategic. Sargent said they are limiting data collection to 30 targets per day, and in the near term, those will mostly be oil and gas producing regions. They aim to map emissions from 80% of global oil and gas production in the first year. The outcome could be revolutionary.
“We can look at the entire sector with high precision and track those emissions, quantify them and track them over time. That’s a first for empirical data for any sector, for any greenhouse gas, full stop,” Hamburg told reporters on Friday.
But this still won’t be enough, said Thorpe of NASA. He wants to see the next generation of instruments start to look more closely at natural sources of emissions, like wetlands. “These types of emissions are really, really important and very poorly understood,” he said. “So I think there’s a heck of a lot of potential to work towards the sectors that have been really hard to do with current technologies.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The storm currently battering Jamaica is the third Category 5 to form in the Atlantic Ocean this year, matching the previous record.
As Hurricane Melissa cuts its slow, deadly path across Jamaica on its way to Cuba, meteorologists have been left to marvel and puzzle over its “rapid intensification” — from around 70 miles per hour winds on Sunday to 185 on Tuesday, from tropical storm to Category 5 hurricane in just a few days, from Category 2 occurring in less than 24 hours.
The storm is “one of the most powerful hurricane landfalls on record in the Atlantic basin,” the National Weather Service said Tuesday afternoon. Though the NWS expected “continued weakening” as the storm crossed Jamaica, “Melissa is expected to reach southeastern Cuba as an extremely dangerous major hurricane, and it will still be a strong hurricane when it moves across the southeastern Bahamas.”
So how did the storm get so strong, so fast? One reason may be the exceptionally warm Caribbean and Atlantic.
“The part of the Atlantic where Hurricane Melissa is churning is like a boiler that has been left on for too long. The ocean waters are around 30 degrees Celsius, 2 to 3 degrees above normal, and the warmth runs deep,” University of Redding research scientist Akshay Deoras said in a public statement. (Those exceedingly warm temperatures are “up to 700 times more likely due to human-caused climate change,” the climate communication group Climate Central said in a press release.)
Based on Intergovernmental Panel on Climate Change reports, the National Oceanic and Atmospheric Administration concluded in 2024 that “tropical cyclone intensities globally are projected to increase” due to anthropogenic climate change, and that “rapid intensification is also projected to increase.”
NOAA also noted that research suggested “an observed increase in the probability of rapid intensification” for tropical cyclones from 1982 to 2017 The review was still circumspect, however, labeling “increased intensities” and “rapid intensification” as “examples of possible emerging human influences.”
What is well known is that hurricanes require warm water to form — at least 80 degrees Fahrenheit, according to NOAA. “As long as the base of this weather system remains over warm water and its top is not sheared apart by high-altitude winds, it will strengthen and grow.”
A 2023 paper by hurricane researcher Andra Garner argued that between 1971 and 2020, rates of intensification of Atlantic tropical storms “have already changed as anthropogenic greenhouse gas emissions have warmed the planet and oceans,” and specifically that the number of these storms that intensify from Category 1 or weaker “into a major hurricane” — as Melissa did so quickly — “has more than doubled in the modern era relative to the historical era.”
“Hurricane Melissa has been astonishing to watch — even as someone who studies how these storms are impacted by a warming climate, and as someone who knows that this kind of dangerous storm is likely to become more common as we warm the planet,” Garner told me by email. She likened the warm ocean waters to “an extra shot of caffeine in your morning coffee — it’s not only enough to get the storm going, it’s an extra boost that can really super-charge the storm.”
This year has been an outlier for the Atlantic with three Category 5 storms, University of Miami senior research associate Brian McNoldy wrote on his blog. “For only the second time in recorded history, an Atlantic season has produced three Category 5 hurricanes,” with wind speeds reaching and exceeding 157 miles per hour, he wrote. “The previous year was 2005. This puts 2025 in an elite class of hurricane seasons. It also means that nearly 7% of all known Category 5 hurricanes have occurred just in this year.” One of those Category 5 storms in 2005 was Hurricane Katrina.
Jamaican emergency response officials said that thousands of people were already in shelters amidst storm surge, flooding, power outages, and landslides. Even as the center of the storm passed over Jamaica Tuesday evening, the National Weather Service warned that “damaging winds, catastrophic flash flooding and life-threatening storm surge continues in Jamaica.”
With Trump turning the might of the federal government against the decarbonization economy, these investors are getting ready to consolidate — and, hopefully, profit.
Since Trump’s inauguration, investors have been quick to remind me that some of the world’s strongest, most resilient companies have emerged from periods of uncertainty, taking shape and cementing their market position amid profound economic upheaval.
On the one hand, this can sound like folks grasping at optimism during a time when Washington is taking a hammer to both clean energy policies and valuable sources of government funding. But on the other hand — well, it’s true. Google emerged from the dot-com crash with its market lead solidified, Airbnb launched amid the global financial crisis, and Sunrun rose to dominance after the first clean tech bubble burst.
The circumstances may change, but behind all of these against-the-odds successes are investors who saw opportunity where others saw risk. In the climate tech landscape of 2025, well-capitalized investors are eyeing some of the more mature sectors being battered by federal policy or market uncertainty — think solar, wind, biogas, and electric transportation — rather than the fresh-faced startups pursuing more cutting edge tech.
“History does not repeat, but it certainly rhymes,” Andrew Beebe, managing director at Obvious Ventures, told me. He was working as the chief commercial officer at the solar company Suntech Power when the first climate tech bubble collapsed in the wake of the 2008 financial crisis. Back then, venture capital and project financing dried up instantly, as banks and investors faced heavy losses from their exposure to risky assets. This time around, “there’s plenty of capital at all stages of venture,” as well as infrastructure investing, he said. That means firms can afford to swoop in to finance or acquire undervalued startups and established companies alike.
“I think you’re gonna see a lot of projects in development change hands,” Beebe told me.
Investors don’t generally publicize when the companies or projects that they’re backing become “distressed assets,” i.e. are in financial trouble, nor do they broadcast when their explicit goal is to turn said projects around. But that’s often what opportunistic investing entails.
“As investors in the energy and infrastructure space — which is inherently in transition — we take it as a very important point of our strategy to be opportunistic,” Giulia Siccardo, a managing director at Quinbrook, told me. (Prior to joining the investment firm, Siccardo was director of the Department of Energy’s Office of Manufacturing & Energy Supply Chains under President Biden.)
Quinbrook sees opportunities in biogas and renewable natural gas, a sector that once enjoyed “very cushioned margins” thanks to investor interest in corporate sustainability, Siccardo told me, but which has lately gone into a “rapid decline.” But she’s also looking at solar and storage, where developers are rushing to build projects before tax credits expire, as well as grid and transmission infrastructure, given the dire need for upgrades and buildout as load growth increases.
As of now, the only investment Quinbrook has explicitly described as opportunistic is its acquisition of a biomethane facility in Junction City, Oregon. When it opened in 2013, the facility used food waste — which otherwise would have emitted methane in a landfill — to produce renewable biogas for clean electricity generation. But after Shell acquired the plant, it switched to converting cow manure and agricultural residue into renewable natural gas for heavy-duty transportation fuels, a process that it’s operated commercially since 2021. Siccardo declined to provide information about the plant’s performance at the time of Quinbrook’s acquisition, though presumably, it has yet to reach its total production capacity of 730,000 million British thermal units per year — enough to supply about 12,000 U.S. households.
The extension of the clean fuel production tax credit, plus the potential for hyperscalers to purchase RNG credits, are still driving demand, however. And that’s increased Siccardo’s confidence in pursuing investments and acquisitions in the space. “That’s a market that, from a policy standpoint, has actually been pretty stable — and you might even say favored — by the One Big Beautiful Bill relative to other technologies,” she explained.
Solar, meanwhile, is still cheap and quick to deploy, with or without the tax credits, Siccardo told me. “If you strip away all subsidies, and are just looking at, what is the technology that’s delivering the lowest cost electron, and which technology has the least supply chain bottlenecks right now in North America —- that drives you to solar and storage,” she said.
Another leading infrastructure investment firm, Generate Capital, is also looking to cash in on the moment. After replacing its CEO and enacting company-wide layoffs, Generate’s head of external affairs, Jonah Goldman, told me that “managers who understand the [climate] space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
The firm also sees major opportunities when it comes to good old solar and storage projects. In an open letter, Generate’s new CEO, David Crane, wrote that “for the first time in nearly four decades, the U.S. has an insatiable need for more power: as much as we can produce, as soon as we can, wherever and however we can produce it.”
Crane sees it as the duty of Generate and other investors to use mergers and acquisitions as a tool to help clean tech scale and mature. “If companies across our subsectors were publicly traded, the market itself would act as a centripetal force towards industry consolidation,” he wrote. But because many clean energy companies are privately funded, Crane said “it is up to us, the providers of that private capital, to force industry improvement, through consolidation and otherwise.”
Helping solar companies accelerate their construction timelines to lock in tax credit eligibility has actually become an opportunistic market of its own, Chris Creed, a managing partner at Galvanize Climate Solutions and co-head of its credit division, told me. “Helping those companies that need to start or complete their projects within a predetermined time frame because of changes in the tax credit framework became an investable opportunity for us,” Creed told me. “We have a number of deals in our near term pipeline that basically came about as a result of that.”
Given that some solar companies are bound to fare better than others, he agreed that mergers and acquisitions were likely — among competitors as well as involving companies working in different stages of a supply chain. “It wouldn’t shock me if you saw some horizontal consolidation or some vertical integration,” Creed told me.
Consolidation can only go so far, though. So while investors seem to agree that solar, storage, and even the administration’s nemesis — wind — are positioned for a long and fruitful future, when it comes to more emergent technologies, not all will survive the headwinds. Beebe thinks there’s been “irrational exuberance” around both green hydrogen and direct air capture, for example, and that seasoned investors will give those spaces a pass.
Electric mobility — e.g. EVs, electric planes, and even electrified shipping — and grid scalability — which includes upgrades to make the grid more efficient, flexible, and optimized — are two sectors that Beebe is betting will survive the turmoil.
But for all investors that have the capability to do so, for now, “the easy bet is just to move your money outside the U.S.” Beebe told me.
We might be starting to see just that. Quinbrook also invests in the U.K. and Australia, and just announced its first Canadian investment last week. It acquired an ownership stake in Elemental Clean Fuels, an energy developer making renewable fuels such as RNG, low-carbon methanol, and — yes — clean hydrogen.
Last week, Generate announced that it had closed $43 million in funding from the Canadian company Fiera Infrastructure Private Debt for its North American portfolio of anaerobic digestion projects, which produce renewable natural gas — Generate’s first cross-currency, cross-border deal.
Creed still has confidence in the U.S. market, however, telling me he’s “very bullish on American innovation.” He certainly acknowledges that it’s a tough time out there for any investor deciding where to park their money, but thinks that ultimately, “that volatility should manifest itself as excess returns to investors who are able to figure out their investment strategy and deploy in this environment.”
Exactly what firms will manage this remains an open question, and the opportunities may be short-lived — but it’s a race that plenty of investors are getting in on.
“I mean, God bless the Europeans for caring about climate.”
Bill Gates, the billionaire co-founder of Microsoft and one of the world’s most important funders of climate-related causes, has a new message: Lighten up on the “doomsday.”
In a new memo, called “Three tough truths about climate,” Gates calls for a “strategic pivot.” Climate-concerned philanthropy should focus on global health and poverty, he says, which will still cause more human suffering than global warming.
“I’m not saying we should ignore temperature-related deaths because diseases are a bigger problem,” he writes. “What I am saying is that we should deal with disease and extreme weather in proportion to the suffering they cause, and that we should go after the underlying conditions that leave people vulnerable to them. While we need to limit the number of extremely hot and cold days, we also need to make sure that fewer people live in poverty and poor health so that extreme weather isn’t such a threat to them.”
This new focus didn’t come with a change in funding priorities — but that’s partly because some big shake-ups have already happened. In February, Heatmap reported that Breakthrough Energy, Gates’ climate-focused funding group, had slashed its grant-making budget. Gates later closed Breakthrough’s policy and advocacy office altogether.
Despite eliminating those financial commitments, he still dwells on two of his longtime obsessions in the new memo: cutting the “green premium” for energy technologies, meaning the delta between the cost of carbon-emitting and clean energy technologies, and improving the measurement of how spending can do the most for human welfare. The same topics dominated his thinking when I last spoke to the billionaire at the 2023 United Nations climate conference in Dubai.
What seems to have shifted, instead, is the global political environment. The Trump administration and Elon Musk gutted the federal government’s spending on global public health causes, such as vaccines and malaria prevention. European countries have also cut back their global aid spending, although not as dramatically as the U.S.
Gates seemingly now feels called to their defense: “Vaccines are the undisputed champion of lives saved per dollar spent,” he writes, praising the vaccine alliance Gavi in particular. “Energy innovation is a good buy not because it saves lives now, but because it will provide cheap clean energy and eventually lower emissions, which will have large benefits for human welfare in the future.”
Last week, Gates shared his thinking about climate change at a roundtable with a handful of reporters. He was, as always, engaging. I’ve shared some of his new takes on climate policy below. His quotes have been edited for clarity.
The environment we’re in today, the policies for climate change are less accommodating. It’s hard to name a country where you’d say, Oh, the climate policies are more accommodating today than they have been in the past.
The thesis I had was that middle income countries — who were already, at that time, the majority of all emissions — would never pay a premium for greenness. And so you could say, well, maybe the rich countries should subsidize that. But you know, the amounts involved would get you up to, like, 4% of rich country budgets would have to be transferred to do that. And we’re at 1% and going down. And there are some other worthy things that that money goes for, other than subsidizing positive green premium type approaches. So the thesis in the book [How to Avoid a Climate Disaster, published in 2021] is we had to innovate our way to negative green premiums for the middle income countries.
Climate [change] is an evil thing in that it’s caused by rich countries and high middle-income countries and the primary burden [falls on poor countries]. When I looked into climate activists, I said, Well, this is incredible. They care about poor countries so much. That’s wonderful, that they feel guilty about it. But in fact, a lot of climate activists, they have such an extreme view of what’s going to happen in rich countries — their climate activism is not because they care about poor farmers and Africa, it’s because they have some purported view that, like, New York City, can’t deal with the flooding or the heat.
The other challenge we have in the climate movement is in order to have some degree of accountability, it was very focused on short-term goals and per-country reports. And the per-country reporting thing is, in a way, a good thing, because a country — certainly when it comes to deforestation or what it’s doing on its electric grid, there is sovereign accountability for what’s being done. But I mean, the way everybody makes steel is the same. The way everybody makes the cement, it’s the same. The way we make fertilizer, it’s all the same. And so there can’t be some wonderful surprise, where some country comes in and, you know, gives you this little number [for its Paris Agreement goals], and you go, Wow, good! You’re so tough, you’re so good, you’re so amazing. Because other than deforestation and your particular electric grid, these are all global things.
If you’re a rich country, the costs of adaptation are just one of many, many things that are not gigantic, huge percentages of GDP — you know, rebuilding L.A. so that it’s like the Getty Museum, in terms of there’s no brush that can catch on fire, there’s no roof that can catch on fire, adds about 10% cost to the rebuild. It’s not like, Oh my god, we can’t live in LA. There’s no apocalyptic story for rich countries. [Climate adaptation] is one of many things that you should pay attention to, like, Does your health system work? Does your education system work? Does your political system work? There are a variety of things that are also quite important.
The place where it gets really tough is in these poor countries. But you know, what is the greatest tool for climate adaptation? Getting rich — growing your economy is the biggest single thing, living in conditions where you don’t face big climate problems. So when you say to an African country, Hey, you have a natural gas deposit, and we’re going to try to block you from getting financing for using that natural gas deposit … It probably won’t work, because there’s a lot of money in the world. It’s not clear how you’d achieve that. And it’s also in terms of the warming effect of that natural gas, versus the improvement of the conditions of the people in that country — it’s not even a close thing.
People in the [climate] movement, we do have to say to ourselves, For the Europeans, how much were they willing to pay in order to support climate? — and did we overestimate in terms of forcing them to switch to electric cars, to buy electric heat pumps, to have their price of electricity be higher? Did we overestimate their willingness to pay with some of those policies? And you do have to be careful because if your climate policies are too aggressive, you will be unelected, and you’ll have a right-wing government that cares not a bit about climate. I mean, God bless the Europeans for caring about climate. You worry they care so much about it that the people you talk to, you won’t be able to meet with them again, because they won’t be in power.