You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why the new “reasoning” models might gobble up more electricity — at least in the short term
What happens when artificial intelligence takes some time to think?
The newest set of models from OpenAI, o1-mini and o1-preview, exhibit more “reasoning” than existing large language models and associated interfaces, which spit out answers to prompts almost instantaneously.
Instead, the new model will sometimes “think” for as long as a minute or two. “Through training, they learn to refine their thinking process, try different strategies, and recognize their mistakes,” OpenAI announced in a blog post last week. The company said these models perform better than their existing ones on some tasks, especially related to math and science. “This is a significant advancement and represents a new level of AI capability,” the company said.
But is it also a significant advancement in energy usage?
In the short run at least, almost certainly, as spending more time “thinking” and generating more text will require more computing power. As Erik Johannes Husom, a researcher at SINTEF Digital, a Norwegian research organization, told me, “It looks like we’re going to get another acceleration of generative AI’s carbon footprint.”
Discussion of energy use and large language models has been dominated by the gargantuan requirements for “training,” essentially running a massive set of equations through a corpus of text from the internet. This requires hardware on the scale of tens of thousands of graphical processing units and an estimated 50 gigawatt-hours of electricity to run.
Training GPT-4 cost “more than” $100 million OpenAI chief executive Sam Altman has said; the next generation models will likely cost around $1 billion, according to Anthropic chief executive Dario Amodei, a figure that might balloon to $100 billion for further generation models, according to Oracle founder Larry Ellison.
While a huge portion of these costs are hardware, the energy consumption is considerable as well. (Meta reported that when training its Llama 3 models, power would sometimes fluctuate by “tens of megawatts,” enough to power thousands of homes). It’s no wonder that OpenAI’s chief executive Sam Altman has put hundreds of millions of dollars into a fusion company.
But the models are not simply trained, they're used out in the world, generating outputs (think of what ChatGPT spits back at you). This process tends to be comparable to other common activities like streaming Netflix or using a lightbulb. This can be done with different hardware and the process is more distributed and less energy intensive.
As large language models are being developed, most computational power — and therefore most electricity — is used on training, Charlie Snell, a PhD student at University of California at Berkeley who studies artificial intelligence, told me. “For a long time training was the dominant term in computing because people weren’t using models much.” But as these models become more popular, that balance could shift.
“There will be a tipping point depending on the user load, when the total energy consumed by the inference requests is larger than the training,” said Jovan Stojkovic, a graduate student at the University of Illinois who has written about optimizing inference in large language models.
And these new reasoning models could bring that tipping point forward because of how computationally intensive they are.
“The more output a model produces, the more computations it has performed. So, long chain-of-thoughts leads to more energy consumption,” Husom of SINTEF Digital told me.
OpenAI staffers have been downright enthusiastic about the possibilities of having more time to think, seeing it as another breakthrough in artificial intelligence that could lead to subsequent breakthroughs on a range of scientific and mathematical problems. “o1 thinks for seconds, but we aim for future versions to think for hours, days, even weeks. Inference costs will be higher, but what cost would you pay for a new cancer drug? For breakthrough batteries? For a proof of the Riemann Hypothesis? AI can be more than chatbots,” OpenAI researcher Noam Brown tweeted.
But those “hours, days, even weeks” will mean more computation and “there is no doubt that the increased performance requires a lot of computation,” Husom said, along with more carbon emissions.
But Snell told me that might not be the end of the story. It’s possible that over the long term, the overall computing demands for constructing and operating large language models will remain fixed or possibly even decline.
While “the default is that as capabilities increase, demand will increase and there will be more inference,” Snell told me, “maybe we can squeeze reasoning capability into a small model ... Maybe we spend more on inference but it’s a much smaller model.”
OpenAI hints at this possibility, describing their o1-mini as “a smaller model optimized for STEM reasoning,” in contrast to other, larger models that “are pre-trained on vast datasets” and “have broad world knowledge,” which can make them “expensive and slow for real-world applications.” OpenAI is suggesting that a model can know less but think more and deliver comparable or better results to larger models — which might mean more efficient and less energy hungry large language models.
In short, thinking might use less brain power than remembering, even if you think for a very long time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A conversation with Mary King, a vice president handling venture strategy at Aligned Capital
Today’s conversation is with Mary King, a vice president handling venture strategy at Aligned Capital, which has invested in developers like Summit Ridge and Brightnight. I reached out to Mary as a part of the broader range of conversations I’ve had with industry professionals since it has become clear Republicans in Congress will be taking a chainsaw to the Inflation Reduction Act. I wanted to ask her about investment philosophies in this trying time and how the landscape for putting capital into renewable energy has shifted. But Mary’s quite open with her view: these technologies aren’t going anywhere.
The following conversation has been lightly edited and abridged for clarity.
How do you approach working in this field given all the macro uncertainties?
It’s a really fair question. One, macro uncertainties aside, when you look at the levelized cost of energy report Lazard releases it is clear that there are forms of clean energy that are by far the cheapest to deploy. There are all kinds of reasons to do decarbonizing projects that aren’t clean energy generation: storage, resiliency, energy efficiency – this is massively cost saving. Like, a lot of the methane industry [exists] because there’s value in not leaking methane. There’s all sorts of stuff you can do that you don’t need policy incentives for.
That said, the policy questions are unavoidable. You can’t really ignore them and I don’t want to say they don’t matter to the industry – they do. It’s just, my belief in this being an investable asset class and incredibly important from a humanity perspective is unwavering. That’s the perspective I’ve been taking. This maybe isn’t going to be the most fun market, investing in decarbonizing things, but the sense of purpose and the belief in the underlying drivers of the industry outweigh that.
With respect to clean energy development, and the investment class working in development, how have things changed since January and the introduction of these bills that would pare back the IRA?
Both investors and companies are worried. There’s a lot more political and policy engagement. We’re seeing a lot of firms and organizations getting involved. I think companies are really trying to find ways to structure around the incentives. Companies and developers, I think everybody is trying to – for lack of a better term – future-proof themselves against the worst eventuality.
One of the things I’ve been personally thinking about is that the way developers generally make money is, you have a financier that’s going to buy a project from them, and the financier is going to have a certain investment rate of return, or IRR. So ITC [investment tax credit] or no ITC, that IRR is going to be the same. And the developer captures the difference.
My guess – and I’m not incredibly confident yet – but I think the industry just focuses on being less ITC dependent. Finding the projects that are juicier regardless of the ITC.
The other thing is that as drafts come out for what we’re expecting to see, it’s gone from bad to terrible to a little bit better. We’ll see what else happens as we see other iterations.
How are you evaluating companies and projects differently today, compared to how you were maybe before it was clear the IRA would be targeted?
Let’s say that we’re looking at a project developer and they have a series of projects. Right now we’re thinking about a few things. First, what assets are these? It’s not all ITC and PTC. A lot of it is other credits. Going through and asking, how at risk are these credits? And then, once we know how at risk those credits are we apply it at a project level.
This also raises a question of whether you’re going to be able to find as many projects. Is there going to be as much demand if you’re not able to get to an IRR? Is the industry going to pay that?
What gives you optimism in this moment?
I’ll just look at the levelized cost of energy and looking at the unsubsidized tables say these are the projects that make sense and will still get built. Utility-scale solar? Really attractive. Some of these next-gen geothermal projects, I think those are going to be cost effective.
The other thing is that the cost of battery storage is just declining so rapidly and it’s continuing to decline. We are as a country expected to compare the current price of these technologies in perpetuity to the current price of oil and gas, which is challenging and where the technologies have not changed materially. So we’re not going to see the cost decline we’re going to see in renewables.
And more news around renewable energy conflicts.
1. Nantucket County, Massachusetts – The SouthCoast offshore wind project will be forced to abandon its existing power purchase agreements with Massachusetts and Rhode Island if the Trump administration’s wind permitting freeze continues, according to court filings submitted last week.
2. Tippacanoe County, Indiana – This county has now passed a full solar moratorium but is looking at grandfathering one large utility-scale project: RWE and Geenex’s Rainbow Trout solar farm.
3. Columbia County, Wisconsin – An Alliant wind farm named after this county is facing its own pushback as the developer begins the state permitting process and is seeking community buy-in through public info hearings.
4. Washington County, Arkansas – It turns out even mere exploration for a wind project out in this stretch of northwest Arkansas can get you in trouble with locals.
5. Wagoner County, Oklahoma – A large NextEra solar project has been blocked by county officials despite support from some Republican politicians in the Sooner state.
6. Skagit County, Washington – If you’re looking for a ray of developer sunshine on a cloudy day, look no further than this Washington State county that’s bucking opposition to a BESS facility.
7. Orange County, California – A progressive Democratic congressman is now opposing a large battery storage project in his district and talking about battery fire risks, the latest sign of a populist revolt in California against BESS facilities.
Permitting delays and missed deadlines are bedeviling solar developers and activist groups alike. What’s going on?
It’s no longer possible to say the Trump administration is moving solar projects along as one of the nation’s largest solar farms is being quietly delayed and even observers fighting the project aren’t sure why.
Months ago, it looked like Trump was going to start greenlighting large-scale solar with an emphasis out West. Agency spokespeople told me Trump’s 60-day pause on permitting solar projects had been lifted and then the Bureau of Land Management formally approved its first utility-scale project under this administration, Leeward Renewable Energy’s Elisabeth solar project in Arizona, and BLM also unveiled other solar projects it “reasonably” expected would be developed in the area surrounding Elisabeth.
But the biggest indicator of Trump’s thinking on solar out west was Esmeralda 7, a compilation of solar project proposals in western Nevada from NextEra, Invenergy, Arevia, ConnectGen, and other developers that would, if constructed, produce at least 6 gigawatts of power. My colleague Matthew Zeitlin was first to report that BLM officials updated the timetable for fully permitting the expansive project to say it would complete its environmental review by late April and be completely finished with the federal bureaucratic process by mid-July. BLM told Matthew that the final environmental impact statement – the official study completing the environmental review – would be published “in the coming days or week or so.”
More than two months later, it’s crickets from BLM on Esmeralda 7. BLM never released the study that its website as of today still says should’ve come out in late April. I asked BLM for comment on this and a spokesperson simply told me the agency “does not have any updates to share on this project at this time.”
This state of quiet stasis is not unique to Esmeralda; for example, Leeward has yet to receive a final environmental impact statement for its 700 mega-watt Copper Rays solar project in Nevada’s Pahrump Valley that BLM records state was to be published in early May. Earlier this month, BLM updated the project timeline for another Nevada solar project – EDF’s Bonanza – to say it would come out imminently, too, but nothing’s been released.
Delays happen in the federal government and timelines aren’t always met. But on its face, it is hard for stakeholders I speak with out in Nevada to take these months-long stutters as simply good faith bureaucratic hold-ups. And it’s even making work fighting solar for activists out in the desert much more confusing.
For Shaaron Netherton, executive director of the conservation group Friends of the Nevada Wilderness, these solar project permitting delays mean an uncertain future. Friends of the Nevada Wilderness is a volunteer group of ecology protection activists that is opposing Esmeralda 7 and filed its first lawsuit against Greenlink West, a transmission project that will connect the massive solar constellation to the energy grid. Netherton told me her group may sue against the approval of Esmeralda 7… but that the next phase of their battle against the project is a hazy unknown.
“It’s just kind of a black hole,” she told me of the Esmeralda 7 permitting process. “We will litigate Esmeralda 7 if we have to, and we were hoping that with this administration there would be a little bit of a pause. There may be. That’s still up in the air.”
I’d like to note that Netherton’s organization has different reasons for opposition than I normally write about in The Fight. Instead of concerns about property values or conspiracies about battery fires, her organization and a multitude of other desert ecosystem advocates are trying to avoid a future where large industries of any type harm or damage one of the nation’s most biodiverse and undeveloped areas.
This concern for nature has historically motivated environmental activism. But it’s also precisely the sort of advocacy that Trump officials have opposed tooth-and-nail, dating back to the president’s previous term, when advocates successfully opposed his rewrite of Endangered Species Act regulations. This reason – a motivation to hippie-punch, so to speak – is a reason why I hardly expect species protection to be enough of a concern to stop solar projects in their tracks under Trump, at least for now. There’s also the whole “energy dominance” thing, though Trump has been wishy-washy on adhering to that goal.
Patrick Donnelly, great basin director at the Center for Biological Diversity, agrees that this is a period of confusion but not necessarily an end to solar permitting on BLM land.
“[Solar] is moving a lot slower than it was six months ago, when it was coming at a breakneck pace,” said Patrick Donnelly of the Center for Biological Diversity. “How much of that is ideological versus 15-20% of the agencies taking early retirement and utter chaos inside the agencies? I’m not sure. But my feeling is it’s less ideological. I really don’t think Trump’s going to just start saying no to these energy projects.”