Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Alsym Thinks It Can Break the U.S. Battery Manufacturing Curse

After a string of high-profile failures, this sodium-ion startup has a proprietary chemistry and a plan to compete on cost.

Sodium and Alsym.
Heatmap Illustration/Getty Images, Alsym Energy

It’s been a bad year for batteries. Grand plans to commercialize novel chemistries and build a manufacturing base outside of China have stumbled, with the collapse of both Northvolt and Natron casting a shadow over the sector. But just as many may be losing faith, there’s a new player in the space: Alsym Energy announced today that it’s rolling out a sodium-ion battery designed for stationary storage that it says will be cheaper than lithium-ion systems from day one.

“It’s always the darkest before the sunrise,” Alsym’s co-founder and CEO Mukesh Chatter told me, saying that past failures in the battery space are irrelevant to the specific tech his company is pursuing. The startup, which raised a $78 million Series C round last April, is targeting the battery energy storage market across utility-scale, commercial, and industrial applications — everything from grid-connected systems to power for data centers, high rise buildings, and mining operations.

Alsym’s chemistry is called sodium iron pyrophosphate, or NFPP+. The “plus” represents dopants — small amounts of additional elements — which are added to the chemistry to improve performance. While the specific dopants and the battery’s electrolyte are proprietary, Chatter told me that the technology doesn’t require the critical minerals lithium, cobalt, or nickel, and that the company will source raw materials entirely from the U.S. or its allies.

The product, which is scheduled to deploy on a small scale next year and reach higher volumes in 2027, follows a decade of research into nonflammable lithium-ion alternatives. The company spent years testing different chemistries after it spun out of MIT in 2015, before settling on NFPP+ chemistry within the last 18 months. Chatter remained tight-lipped about the specifics of that process, noting only that the company faced “a couple of false starts,” coupled with supply chain challenges earlier this year.

Now, though, those years of research might have finally paid off. “I believe we are farthest ahead than anyone else in that space today in the United States,” he told me.

One of Alsym’s key advantages, Chatter explained, is that its battery has been certified by the independent safety body Underwriter Laboratories as nonflammable, compared to lithium-ion batteries, which are notoriously not. Alsym’s battery also offers superior performance at both high and low temperatures. The company’s cells will be cost-competitive with the leading lithium-ion chemistry right off the bat, Chatter told me, and the overall system will be 30% cheaper because the battery’s thermal stability and ability to perform at high temperatures eliminates the need for the costly, maintenance-heavy cooling systems. It’s a similar value proposition to that of Peak Energy, another startup seeking to deploy sodium-ion battery storage systems.

While sodium-ion cells are less energy dense than lithium-ion, eliminating the entire HVAC system means that the system itself isn’t all that much bulkier, making it possible to deploy in space-constrained environments such as commercial or residential buildings.

Alsym aims to manufacture its sodium-ion cells in the U.S., both for supply chain security and to take advantage of the country’s abundant sodium reserves. The latter, Chatter told me, means that “it will be cheaper to build it in the United States than anywhere else.”

While Alsym operates a pilot plant making sodium-ion cells, the company plans to scale its production through partnerships with third parties who either operate existing lithium-ion cell facilities or are in the process of building them, as sodium-ion cells can be produced on the same lines. “We want to partner with somebody who has that scale,” Chatter told me, explaining that a company of Alsym’s size could never compete with China by going at it alone. “But if we can partner with a much larger player who has the heft and the skill set and expertise to build large plants — or already has lithium ion plants — then we can compete head to head.”

Tata Energy, a leading power company in India worth about $14 billion, led Alsym’s Series C round. Chatter said the company also has strategic support from several mining companies, with other early use cases likely to include microgrid installations as well as primary or backup power for data centers and telecom companies.

“It’s not exactly the most glamorous space right now,” Chatter admitted, acknowledging the string of recent battery company failures. “But things happen in ebbs and flows.” He thinks the sodium-ion sector just needs one big success to prove its potential as a safer, cheaper alternative. “It really is all about cost and revenue opportunities,” he told me. If all goes according to plan for Alsym, we won’t have to wait much longer to see if he’s right.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Carbon Removal

The Great Canadian DAC-Off

Deep Sky is running a carbon removal bake-off on the plains of Alberta.

Deep Sky.
Heatmap Illustration/Emily Pontecorvo, Getty Images

Four years ago, Congress hatched an ambitious, bipartisan plan for the United States to become the epicenter of a new climate change-fighting industry. Like an idea ripped from science fiction, the government committed $3.5 billion to develop hulking steel complexes equipped with industrial fans that would filter planet-warming carbon dioxide out of the air.

That vision — to build regional hubs for “direct air capture” — is now languishing under the Trump administration. But a similar, albeit privately-funded initiative in Canada has raced ahead. In the span of about 12 months, a startup called Deep Sky transformed a vacant five-acre lot in Central Alberta into an operational testing ground for five different prototypes of the technology, with more on the way.

Keep reading...Show less
Blue
AM Briefing

A Rare Earths Deal

On permitting reform optimism, GM layoffs, and LA’s H2 conversion

Xi Jinping.
Heatmap Illustration/Getty Images

Hurricane Melissa made landfall over Cuba with winds raging up to 120 miles per hour | If the Category 5 storm veers westward as it heads north, Melissa will bring roiling seas to Atlantic Canada; if it veers eastward, it will bring rain to the United Kingdom | Heavy snowfall in Tibet forced Chinese authorities to shut down access to Mount Everest.

THE TOP FIVE

1. China suspends some rare earth export controls for a year

The rare earths will flow, for now. Cheng Xin/Getty Images

Keep reading...Show less
Blue
Energy

What an ‘Elegant’ Notice of Proposed Rulemaking Looks Like, According to Neil Chatterjee

The former FERC chair explains why Chris Wright is likely to succeed where Rick Perry failed.

Neil Chatterjee and Chris Wright.
Heatmap Illustration/Getty Images

Neil Chatterjee thinks it’s going to go better this time.

Eight years ago, Chatterjee was the chairman of the Federal Energy Regulatory Commission, and Trump was the president. When Trump’s then-Secretary of Energy, Rick Perry, asked the commission to ensure that generators able to store fuel on site — which in the U.S. largely means coal and nuclear — get extra payments for doing so, thus keeping struggling power plants in business, it rejected the proposal by a unanimous vote.

Keep reading...Show less