You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
At San Francisco Climate Week, everything is normal — until it very much isn’t.
San Francisco Climate Week started off on Monday with an existential bang. Addressing an invite-only crowd at the Exploratorium, a science museum on the city’s waterfront, former vice president and long-time climate advocate Al Gore put the significance and threat of this political moment — and what it means for the climate — in the most extreme terms possible. That is to say, he compared the current administration under President Trump to Nazi Germany.
“I understand very well why it is wrong to compare Adolf Hitler’s Third Reich to any other movement. It was uniquely evil,” Gore conceded before going on: “But there are important lessons from the history of that emergent evil.” Just as German philosophers in the aftermath of World War II found that the Nazis “attacked the very heart of the distinction between true and false,” Gore said, so too is Trump’s administration “trying to create their own preferred version of reality,” in which we can keep burning fossil fuels forever. With his voice rising and gestures increasing in vigor, Gore ended his speech on a crescendo. “We have to protect our future. And if you doubt for one moment, ever, that we as human beings have that capacity to muster sufficient political will to solve this crisis, just remember that political will is itself a renewable resource.”
The crowd went wild. Former House Speaker Nancy Pelosi took the stage and reminded the crowd that Gore has been telling us this for decades — maybe it’s time we listen. But I missed all that. Because just a few miles away, things were getting a little more in the weeds at the somewhat less exclusive venture capital-led panel entitled “The Economics of Climate Tech: Building Resilient, Scalable, and Sustainable Startups.” Here, I learned about a new iron-sodium battery chemistry and innovations in transformers for data centers, microgrids, and EV charging infrastructure.
I heard Tom Chi, founding partner of At One Ventures, utter sentences such as “parity dies because of capex inertia,” referring to the need to make clean tech not only equivalent to but cheaper than fossil-fuels on a unit economics basis. Such is the duality of climate week during the Trump administration — occasionally lofty in both its alarm and its excitement, but more often than not simply business-as-usual, interrupted by bouts of heady doom or motivational proclamations.
Some panels, like the one I moderated on the future of weather forecasting using artificial intelligence, made it a full hour without discussing Trump, tariffs, or tax credits at all. So far, that’s held true for a number of talks on how AI can be a boon to climate tech. It makes sense — the administration is excited about AI, and there’s really no indication that Trump has given any thought to either the positive or negative climate externalities of it.
But rapid data center buildout and the attendant renewables boom that it may (or may not) bring will certainly be influenced by the administration’s fluctuating policies, an issue that was briefly discussed during another panel: “AI x Energy: Gridlocked or Grid Unlocked?” Here, representatives from Softbank, Pacific Gas & Electric, and the data center builder and operator Switch touched on how market uncertainty is making it difficult to procure energy for data centers — and to figure out the cost of building a data center, period.
“There is a lot of refiguring and rereading contracts and looking at the potential exposure to things like the escalation in the cost of steel for construction projects,” Skyler Holloway of Switch said. Pinning down a price on the energy required to power data centers is also a bottleneck, Gillian Clegg, vice president of energy policy and procurement at PG&E explained. “For projects that want to connect between now and 2030, any kind of uncertainty or delay means that the generation doesn't get to the market,” Clegg said. “Maybe the load gets there first, and you have an out of balance situation.”
Everyone acknowledges that uncertainty is bad for business, and that delays related to funding, contracts, and construction can kill otherwise viable companies. But unsurprisingly, nobody here has admitted that said uncertainty might put them out of business, or even deeply in the red. Every panel I attend, I find myself wondering whether a founder or investor is finally going to raise their voice, à la Al Gore, and tell the audience that while their company’s business model is well and good, the Trump administration’s illogical antipathy towards green-coded tech and ill-conceived trade war is throwing the underlying logic — sound as it may have been just a year ago — into disarray.
None of the seven energy, food, and agricultural startups that presented at the nonprofit climate investor Elemental Impact’s main show, for instance, discussed the impacts of the administration’s policies on their businesses. Rather, they maintained a consistently upbeat tone as they described the promise of their concepts — which ranged from harnessing ocean energy to developing plant-based fertilizers to using robotics for electronics recycling — and the momentum building behind them. Nuclear and geothermal companies, seemingly poised to be the clean tech winners of Chris Wright’s Department of Energy, have been especially optimistic this week.
But really, what else can climate tech companies and investors be expected to do right now besides, well, rise and grind? It’s not like anybody has answers as to what’s coming down the policy pike. In a number of more casual conversations this week, a common sentiment I heard was that it’s not necessarily a bad time to be an early-stage startup — keep your head down, focus on research and prototyping, and reassess the political environment when you’re ready to build a pilot or demonstration plant. As for later-stage companies and venture capital firms, they’re likely working to ensure that their business models and portfolios really aren’t dependent on government subsidies, grants, or policies — as they keep assuring me is the case.
Even that might not be enough these days though. Chi said he’s always tailored his investments with At One Ventures towards companies that are viable based on unit economics alone, no subsidies and no green premium. So he wasn’t initially worried about his portfolio when Trump was elected. “None of our business models were invalidated by the election,” he said. “The only way that we could be in trouble is if they mess it up so bad that it ruins all of business, not just climate …”
Oops.
If there’s one dictum that I would expect to hold, though, it’s that the startups that make it through this period will likely be around for the long haul. I’ve been hearing that sentiment since the election, and Mona ElNaggar, a partner at Valo Ventures, echoed it once again this week. “Microsoft and Apple were founded in the mid 1970s, which was a time of severe recession and stagflation. Amazon started at the tail end of a big recession in the early 1990s,” ElNaggar reminded the audience at the Economics of Climate Tech panel, which she moderated. “Companies that survive and actually thrive in such periods share a common thread of resilience.”
As that panel wrapped up, things got existential once more as Chi’s talk moved from describing his investment thesis to the moment at large. “This time period in history is going to bring us tragedy after tragedy, and it’s really that moment that we’re going to understand the deep underlying structure of half of the world that we’ve built, and also the character of who we are,” Chi told the audience. It was unclear whether we were even talking about climate tech anymore. Chi continued, “It’s in that time period that we are going to step up and become whatever we are meant to be or not at all.”
The crowd sat there, a little stunned. Were we, in this very moment, becoming who we were meant to be? I took a bite of my free sushi as the networking and hobnobbing began.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Generate Capital‘s Jonah Goldman makes his case.
The Inflation Reduction Act sparked a predictable surge in clean energy-related investments from the law’s signing in 2022 through the 2024 election, before President Trump’s second term ushered in an era of cancellations, closures, and downsizing. Of the domestic projects announced since the IRA’s passage, a total of 35 have been nixed or scaled back so far this year — more than in all of 2023 and 2024 combined, according to estimates from the environmental advocacy organization E2. This accounts for over $22 billion in lost investment and 16,500 in lost jobs.
“There’s a drastic decrease in the amount of new [clean energy] investments,” E2’s Michael Timberlake told me. After the IRA’s passage, he explained, nearly every month saw over a billion dollars invested in new clean energy projects. But since December of last year, monthly investment has come in below a billion dollars more often than not.
Domestic electric vehicle and battery manufacturing projects have been hit the hardest, as these sectors are staring down a federal bureaucracy clearly hostile to their tech on the one hand and Chinese competitors that are already leagues ahead of them on the other. But there is a bright spot: E2’s data shows that the grim outlook for clean energy projects is largely confined to the manufacturing sector. Many large-scale energy generation projects might actually, maybe, be mostly okay.
That’s what Jonah Goldman of the infrastructure investment firm Generate Capital is banking on. As electricity demand rises for the first time in over a decade, the need to deploy cost-competitive grid energy is only increasing. Thus, Goldman sees plenty of reason to continue investing in a renewables buildout — solar especially, which can often be deployed more quickly, flexibly, and economically than any other form of generation, politics aside.
“What is not a question really anymore is whether these projects are going to get built,” Goldman told me. “There’s just not another option. Even if you think of doubling our investment in gas generation, you still don’t get to this incredible increase in power demand that we need in order to reach the projections that we’re getting.”
Taking a closer look at the post-IRA projects that have been either canceled or scaled back shows that solar is indeed the most resilient investment of the bunch. Since the IRA’s passage, about 12% of announced solar projects have been canceled or downsized, compared to 25% of wind projects, 19% of EV projects, and 34% of EV battery projects. Only three of the 35 projects hit this year were related to solar, and only one of those was for solar generation.
Despite the overall dour domestic investment outlook, Timberlake thus agrees with Goldman that solar in particular isn’t grinding to a halt anytime soon. The market signal for clean energy, Timberlake said, is “indisputable.” The buildout might happen more slowly than it otherwise would have, as the administration continues to unspool regulatory red tape for these projects, but it’ll happen.
And, of course, it will get more expensive. Because while Trump’s One Big Beautiful Bill maintains investment and production tax credits for most clean energy technologies through 2033, it cuts credits for solar and wind projects that either start construction after July 2026, or, if they haven’t started by then, are placed in service after 2027.
While Goldman hates what that will do to electricity prices, he doesn’t seem too worried about it hurting Generate’s ability to invest. For the moment, he told me, this timeline leaves the firm with a strong pipeline of opportunities not only in solar, but also in other categories like battery energy storage, geothermal, and sustainable fuels that have largely retained their IRA incentives. “You’re still talking about hundreds of billions of dollars of available investments that don’t wear that risk at all,” he said.
In fact, there are also already so many renewables projects under construction or set to begin soon that “we’ve got more investable opportunities than we have capital to invest,” Goldman explained. Rather than a lull, the tax credit cutoff date is now creating an incentive for investors to throw their support behind projects that appear poised to meet the deadlines.
That won’t last forever. After the credits phase out, investment could certainly dip, Goldman said, “until either those incentives are restored — which they still could be — or the market figures out how to effectively price those projects without that incentive.” Because tax-credit eligible projects that began construction prior to July 2026 will still be coming online for the next few years, Goldman predicts the lull could start around 2029.
He’s not convinced the incentives are gone for good, though. Solar and wind tax credits have suffered through many periods of uncertainty during their decades-long history, always ultimately enduring. And while the industry shouldn’t bank on a mid-term congressional shakeup laying the groundwork for a credit extension, it’s always a possibility — especially given looming electricity price hikes. That could rile up voters enough to begin chipping away at the partisan divides that have formed around clean energy, fossil fuels, and how the heck to power all of these AI data centers.
“We’re no longer talking about a political issue, despite the fact that they made this a political issue.” Goldman told me. “What we need is more electrons on the grid for as affordable a price as possible. And some of those will be generated from gas, and some of those will be generated from renewables.”
The U.S. is also not the only place for infrastructure investors to make money. While domestic clean energy investment may be down, the first half of 2025 saw global private infrastructure funding increase significantly compared with the prior two years. Data center and renewables-focused funds drove the trend, making up 45% and 36% of total investment raised, respectively. The “power and transmission” sector — which includes fossil fuel-fired generation — comprised a mere 12%.
But given that climate funds from all corners of the globe do primarily invest in the U.S., this certainly points to a sustained interest in building domestic clean energy infrastructure. Or, as Goldman put it, “the fundamentals of the market are complicated but only pointing in one direction — a deep thirst for quick, buildable power. And there’s only certain technologies that can fill that deep thirst.”
On Interior’s birdwatching, China’s lithium slowdown, and recycling aluminum
Current conditions: Hurricane Erin is gathering strength as it makes its way toward Puerto Rico later this week • Flash flooding and severe storms threaten the Great Plains and Midwest • In France, 12 administrative regions are on red alert for heat as temperatures surge past 95 degrees Fahrenheit.
Ford announced plans on Monday to deliver a $30,000 mid-size all-electric truck in 2027, in a potential shakeup of an EV market that’s been plagued by high costs. But the truck — which is rumored to revive the retro name Ford Ranchero — wasn’t really the main news. The pickup is part of Ford’s plan to “reimagine the entire way it builds EVs to cut costs, turn around its struggling EV division, and truly compete with the likes of Tesla,” Heatmap contributor Andrew Moseman wrote, which the company has dubbed its second “Model T moment.”
The strategy embraces a more minimalist, software-driven method of car design that EV-only companies such as Tesla and Rivian employ, allowing them to make mechanically simpler vehicles with fewer buttons and parts and more functions run by software through touchscreens. The push could “change everything” and “disrupt the U.S. auto industry,” wrote Inside EVs.
The Department of the Interior’s Fish and Wildlife Service is sending letters to wind developers across the U.S. asking for volumes of records about eagle deaths, indicating an imminent crackdown on wind farms under the auspices of bird protection laws, Heatmap’s Jael Holzman reported. The letters demand developers submit a laundry list of documents to the Service within 30 days, including “information collected on each dead or injured eagle discovered.”
The Trump administration has ramped up its assault on the wind industry in recent weeks, de-designating millions of acres of ocean for offshore wind development and yanking federal approvals for the Lava Ridge wind project in Idaho. Here’s Jael with more on the escalation.
An explosion at a U.S. Steel plant outside Pittsburgh killed at least two workers and injured nearly a dozen more. The first worker confirmed to have died was Timothy Quinn, 39, a father of three and caretaker to his mother, his sister, Trisha Quinn told CNN. She said officials did not alert her to her brother’s death until 4 p.m., hours after the explosion occurred. “My dad worked at the steel mill for 42 years,” she said. “He would be disgusted at the situation right now.” U.S. Steel executives said they do not yet know what caused the blast. The name of the second worker to have died was not yet confirmed.
The Clairton Coke Works facility, which has operated for more than 120 years, is a key node in the American steel supply chain, providing iron for the blast furnaces in Braddock, Pennsylvania, and Gary, Indiana. It was slated for potential investments under Nippon Steel’s $15 billion acquisition of the American giant. The extent of the damage is unclear, but the reconstruction of the plant could pose a test of whether Nippon will invest in newer, cleaner technologies or rebuild the existing coal-fired equipment.
Chinese battery giant Contemporary Amperex Technology, or CATL, said Monday it would halt production at a major lithium mine, sparking a surge in lithium futures and miners’ share prices, Reuters reported. The move is seen as part of Beijing’s broader attempt to rein in China’s overcapacity in the battery market, which created a global glut. Stock in lithium companies outside China surged on the news, as did spot prices. The license on the mine, located in the southeast province of Jiangxi, expired on August 9. The site previously supplied up to 6% of the world’s lithium.
“I am bullish on the move. It is proof positive that Chinese producers can only operate at a loss for so long before shutting in production. When they do, the floor under prices starts to take shape,” Ashley Zumwalt-Forbes, the Department of Energy’s former deputy director for batteries and critical minerals, wrote on LinkedIn. “This move will not fix the sector’s structural challenges overnight, but it is a meaningful signal that the worst of the oversupply pressure may be behind us.”
President Donald Trump’s 50% tariffs on imported aluminum could spur a recycling boom, industry experts told The Wall Street Journal’s Ryan Dezember. Primary aluminum production dwindled over the last 25 years. Two of the first new smelters planned in the U.S. in decades are facing increased competition for electricity from data centers. Production is likely still a few years away. By contrast, aluminum-recycling plants can be built faster and cheaper — roughly two years and $150 million — and consume 5% of the energy needed for primary production since they rely on chemical reactions to break down wasted metal. “Recycling is the answer,” said Duncan Pitchford, the executive in charge of recycling giant Norsk Hydro’s upstream business in the U.S. “The metal is already here.”
Scientists at the University of Illinois Urbana-Champaign and Princeton University re-engineered the metabolism of the yeast Issatchenkia orientalis to supercharge its fermentation of plant glucose into succinic acid, an important industrial chemical used in food additives and agricultural and pharmaceutical products. The natural fermentation process, relying on yeasts and renewable plant material, is far less carbon intensive than the conventional production using petrochemicals. “These advances bring us closer to greener manufacturing processes that benefit both the environment and the economy,” Vinh Tran, study’s primary author, said in a press release.
The assembly line is the company’s signature innovation. Now it’s trying to one-up itself with the Universal EV Production System.
In 2027, Ford says, it will deliver a $30,000 mid-size all-electric truck. That alone would be a breakthrough in a segment where EVs have struggled against high costs and lagging interest from buyers.
But the company’s big announcement on Monday isn’t (just) about the truck. The promised pickup is part of Ford’s big plan that it has pegged as a “Model T moment” for electric vehicles. The Detroit giant says it is about to reimagine the entire way it builds EVs to cut costs, turn around its struggling EV division, and truly compete with the likes of Tesla.
What lies beneath the new affordable truck — which will revive the retro name Ford Ranchero, if rumors are true — is a new setup called the Ford Universal EV Platform. When car companies talk about a platform, they mean the automotive guts that can be shared between various models, a strategy that cuts costs compared to building everything from scratch for each vehicle. Tesla’s Model 3 and Model Y ride on the same platform, the latter being essentially a taller version of the former. Ford’s rival, General Motors, created the Ultium platform that has allowed it to build better and more affordable EVs like the Chevy Equinox and the upcoming revival of the Bolt. In Ford’s case, it says a truck, a van, a three-row SUV, and a small crossover can share the modular platform.
At the heart of the company’s plan, however, is a new manufacturing approach. The innovation of the original Model T was about the factory, after all — using the assembly line to cut production costs and lower the price of the car. For this “Model T moment,” the company has proposed a sea change in the way it builds EVs called the Ford Universal EV Production System. It will demonstrate the strategy with a $2 billion upgrade to the Ford factory in Louisville, Kentucky, that will build the new pickup.
In brief, Ford has embraced the more minimalist, software-driven version of car design embraced by EV-only companies like Tesla and Rivian. The vehicles themselves are mechanically simpler, with fewer buttons and parts, and more functions are controlled by software through touchscreen interfaces. Building cars this way cuts costs because you need far fewer bits, bobs, fasteners, and workstations in the factory. It also reduces the amount of wiring in the vehicle — by more than a kilometer of the stuff compared to the Mustang Mach-E, Ford’s current most popular EV, the company said.
Ford is in dire need of an electric turnaround. The company got into the EV race earlier than legacy car companies like Toyota and Subaru, which settled on more of a wait-and-see approach. Its Mustang Mach-E crossover has been one of the more successful non-Tesla EVs of the early 2020s; the F-150 Lightning proved that the full-size pickup truck that dominates American car sales could go electric, too.
But both vehicles were expensive to make, and the Lightning struggled to make a dent in the truck market, in part because the huge battery needed to power such a big vehicle gave it a bloated price. When Tesla started a price war in the EV market a few years ago, Ford began hemorrhaging billions from its electric division, struggling to adapt to the new world even as carmakers like GM and Hyundai/Kia found their footing.
The big Detroit brand has been looking for an answer ever since, and Monday’s announcement is the most promising proposal it has put forward. Part of the production scheme is for Ford to build its own line of next-gen lithium-ion phosphate, or LFP batteries in Michigan, using technology licensed from the Chinese giant CATL. Another step is to employ the “assembly tree,” which splits the traditional assembly line into three parallel operations, which Ford says reduces the number of required workstations and cuts assembly time by 15%.
Affordability has always been a bugaboo for the American EV industry, a worry exacerbated by the upcoming demise of the $7,500 tax credit. And while Ford’s manufacturing overhaul will go a long way toward building a light-duty pickup EV that sells for $30,000, so too will a fundamental change in thinking about batteries, weight, and range. The F-150 Lightning isn’t the only pickup with a big battery and an even bigger price. That truck’s power pack comes in at 98 kilowatt-hours; large EV pickups like the Rivian R1T and Chevy Silverado EV have 150 or even 200 kilowatt-hour batteries, necessary to store enough power to give these heavy beasts a decent driving range.
InsideEVs reports, however, that the affordable Ford truck may have a battery capacity of just over 50 kilowatt-hours, which would dramatically reduce its cost to make. The trade-off, then, is range. The Slate small pickup truck that made waves this year for its promised price in the $20,000s would have just 150 miles of range in its cheapest form. Ford hasn’t released any specs for its small EV truck, but even using state-of-the-art LFP chemistry, such a small battery surely won’t deliver many more miles per charge.
Whatever the final product looks like, the new Ford truck and the infrastructure behind it are another reminder that, no matter the headwinds caused by the Trump administration, EVs are the future. Ford had been humming along through its EV struggles because its gas-burning cars remained so popular in America, and so profitable. But those profits collapsed in the first half of 2025, according to The New York Times. Meanwhile, Ford and every other carmaker are struggling to catch up to the Chinese companies selling a plethora of cheap EVs all over the world. Their very future depends on innovating ways to build EVs for less.