You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
His intellectual influences include longtime climate action skeptics — and Bill Gates’ favorite author.

Donald Trump’s nominee for Secretary of Energy, Chris Wright, is a nerd — and he’ll tell you about it. “I’m Chris Wright, and my short bio is, I started out as a science geek, I transitioned to a tech nerd, and then I’ve been an energy entrepreneur my whole life,” he told energy journalist Robert Bryce on the Power Hungry podcast in 2020. “In addition to an energy nerd, I’ve been a climate nerd for quite some time,” he said in a talk hosted by Veriten, the energy consulting firm in 2023.
This is a far cry from Trump’s first Energy Secretary, the former Texas Governor Rick Perry, who famously failed to remember on the Republican primary debate stage the third of the three agencies he sought to eliminate (it was the Department of Energy) and who reportedly didn’t know that the Energy Department’s responsibilities — and budget — then lay heavily with maintaining the country’s nuclear stockpile.
But Wright’s extensive energy experience — studying nuclear fusion at the Massachusetts Institute of Technology and working early in his career on solar and geothermal engineering (his company, Liberty Energy, the fracking powerhouse he founded in 2011, has invested in the next-generation geothermal company Fervo, and Wright sits on the board of the nuclear company Oklo) — has not won him any plaudits from environmental groups or Democrats who focus on climate change. After Trump announced his nomination, the Sierra Club called Wright a “climate denier who has profited off of polluting our communities and endangering our health and future.” Illinois Rep. Sean Casten, one of the House’s most vocal proponents of climate action, also called Wright a “climate denier who prioritizes the wants of energy producers over the needs of American consumers.”
Few Republicans — and certainly few high-level Trump appointees — are as conversant in climate and energy data as Wright. That may make him an even more effective advocate for Trump’s “energy dominance” strategy, built around increased production of fossil fuels and, almost certainly, fewer subsidies for clean energy and electrification.
Typically when a person gains some notoriety by coming out against immediate, large-scale climate action and restrictions on fossil fuel extraction, climate advocates try to link that person to the fossil fuel industry and its long history of deliberate and knowing climate denial. Wright’s associations, however, are perfectly straightforward: Liberty Energy fracks oil and gas in the United States and Canada on behalf of large oil companies. He thinks the company’s contribution to the good of the world consists of its producing more hydrocarbons — full stop.
Get the best of Heatmap in your inbox daily.
Wright calls this philosophy “energy sobriety,” fully conceding that climate change is real while also diminishing the urgency of mounting a response. In seemingly countless speeches, interviews, and legislative testimonies, as well as in Liberty Energy’s annual “Bettering Human Lives” report — its version of an environmental, social, and governance review — Wright is perfectly comfortable acknowledging climate change while also patiently assaulting many key pillars of climate policy as it’s practiced in the United States, Europe, and other countries in the developed world seeking to sharply reduce greenhouse gas emissions.
While Wright’s written and spoken record adds up to tens of thousands of words and hours of talks, it can be distilled into a few core ideas: Energy consumption makes people better off; energy access, especially in the developing world, is a greater global challenge than climate change; and existing alternatives to hydrocarbons are not capable of replacing the status quo energy system, which still overwhelmingly relies on fossil fuels, with little prospect of a rapid transition.
He cites a wide range of thinkers, including members of a group of scholars — including the Danish political scientist Bjorn Lomborg (whose book, False Alarm, is “fantastic,” Wright said in a Liberty talk), University of Colorado science policy scholar Roger Pielke, Jr. (“a real intellectual”), and the Canadian energy scholar and historian Vaclav Smil (“the greatest energy scholar of my lifetime by far”) — who share elements of this deflationary view of climate change.
Lomborg and Pielke have long been bêtes noires of the climate movement, mostly as the subjects of years of furious back and forth in every form of media for the past two-plus decades. (Though in Pielke’s case, there was also an investigation in 2015 over alleged conflicts of interest led by House Democrat Raul Grijalva, who is retiring from Congress this year.) Lomborg has for decades argued that climate change ranks relatively low on global challenges compared to, say, global public health, while Pielke contends that many climate change policy advocates overstate what the Intergovernmental Panel on Climate Change actually says about the connection between climate change and extreme weather, a point that has made him the object of intense criticism for going on 15 years.
Smil, meanwhile, is deeply skeptical of any effort to wean the world from fossil fuels considering their role in the production of steel, cement, plastics, and fertilizers — the materials that he describes as essential to the modern world. Smil also counts among his fans Bill Gates (“Vaclav Smil is my favorite author”), who is also one of the biggest funders and promoters of climate action through his research and investment group Breakthrough Energy and funding for companies like TerraPower, which is currently building the country’s first next-generation nuclear facility in Wyoming.
Pielke called both Wright and Doug Burgum, Trump’s nominee for Secretary of the Interior and the designated head of a planned National Energy Council “super competent. They know energy, and that’s a fantastic starting point,” he told me.
“There is polarization of the climate debate, and the idea that fossil fuels are evil and the fossil industry are arch-villains — that’s part of the framing from the progressive left about how climate wars are to be fought,” Pielke said. “I’m not particularly wedded to that sort of Manichean evil vs. good framing of the debate.”
But the differences are real. Wright strongly contests much of what is the mainstream of climate policy. While he acknowledges that increased concentrations of carbon dioxide cause higher temperature, he says it’s “actually sort of slow-moving in our lifetimes” and a “relatively modest phenomenon that’s just been wildly abused for political reasons,” he said in a talk to the conservative policy group American Legislative Exchange Council.
While the Department of Energy has only limited authority over energy policy, per se, especially the permitting and public lands issues that typically concern fossil fuel companies, Wright does have some levers he can pull. He will likely act quickly to approve more export facilities for liquified natural gas, though the Energy Department’s recently released study of LNG’s long-term effects — particularly on domestic energy prices — may complicate that somewhat. Beyond that, he will inherit a massive energy research portfolio through the national labs, putting him in charge of developing the energy technology that he says are currently insufficient to replace oil and gas.
“I’ve worked on alternatives. I’d love it if fusion energy arrives,” Wright said in an interview with the conservative website Power Line. “I love energy technology, and I think there’s good things going on, but it’s now become political.”
He believes that reaching net zero greenhouse gas emissions by 2050 is “neither achievable nor humane,” he wrote in the foreword to the 2024 edition of “Bettering Human Lives.” He also disagrees with the idea of subsidizing the world’s predominant forms of alternative energy, solar and wind.
“Wind and solar are never going to be dominant sources of energy in the world,” Wright told Bryce on the 2020 podcast. The “main impact” of subsidies for wind and solar, Wright said in another 2023 podcast episode with Bryce, “is just to make our electricity grids less reliable and electricity prices more expensive, and to do nothing for the demand for oil and very little for the demand for natural gas.”
“Oil and gas make the world go round,” he added. “[People] want higher quality of lives. That’s what drives the demand for oil and gas.”
Bryce, a persistent critic of green energy policies, told me in an email that he thinks Wright is “the right person for the DOE. He’s not apologetic about being an energy humanist. Regardless of what anyone thinks about climate change, it is obvious that we are going to need a lot more energy in the future, and the majority of that new supply will come from hydrocarbons.”
While Wright’s arguments certainly have wide purchase among his peers in the energy industry executive corps, he nevertheless stands out from the rest for his willingness to express them. In contrast to the stance taken by large, multinational energy companies, which are willing at least to pay lip service to carbon reduction goals and have, at times, embraced branding and marketing strategies to make them seem like something other than oil and gas companies (e.g. ExxonMobil’s algae-based fuel initiative and BP’s notorious “Beyond Petroleum” campaign), Wright and his company see their contribution to a better world as their work extracting oil and gas.
Other executives “don’t want to deal with the criticism that will come with taking a higher-profile stance,” Bryce told me. “They don’t have time or the inclination. It takes a lot of time, courage, and conviction to engage with the media, get on the speaking circuit, and do so in a thoughtful way.”
Wright’s emphasis on the energy poverty faced by poor countries could potentially serve as a diplomatic bridge to the developing world, especially in Africa, where some observers think there’s space for the United States to start funding natural gas development through the International Development Finance Corporation. For Wright, expanding energy production — and specifically fossil fuel development — is crucial to providing cheap energy to the developing world. He mentions in almost every talk the billions of people who use wood, dung, or other biofuels on open fires to cook indoors, causing 3 million premature deaths per year.
“The biggest problem today is a third of humanity doesn’t have hydrocarbons,” Wright told Bryce in 2023. In a 2023 speech to the American Conservation Coalition, a conservative environmental group, he described strictures against financing fossil fuel development as “not just ignorant or bad policy” but “immoral.” His solution: distributing propane stoves as widely as possible, in part through his Bettering Human Lives Foundation.
Here might be the greatest challenge for advocates of climate action: Even if most of the world’s leaders have accepted the reality of anthropogenic climate change, much of the world, especially outside North America and Europe, is still eagerly increasing its use of fossil fuels. In the United States, coal plant shutdowns are being pushed out further and natural gas investment may soon pick up again to power new demand for electricity. Globally, coal use is set to grow over the next few years. That’s thanks in large part to demand from China, the world’s largest emitter and second-largest cumulative emitter behind the United States, defying predictions that demand there was near peaking. The biggest new source of oil demand is India, a country with a per-capita gross domestic product less than 1/30th of the United States.
And so the greatest danger to aggressive action to lower global emissions may not be Chris Wright and his “sober” ideas at the helm of the Department of Energy. It may be that much of the world agrees with him.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Deep Fission says that building small reactors underground is both safer and cheaper. Others have their doubts.
In 1981, two years after the accident at Three Mile Island sent fears over the potential risks of atomic energy skyrocketing, Westinghouse looked into what it would take to build a reactor 2,100 feet underground, insulating its radioactive material in an envelope of dirt. The United States’ leading reactor developer wasn’t responsible for the plant that partially melted down in Pennsylvania, but the company was grappling with new regulations that came as a result of the incident. The concept went nowhere.
More than a decade later, the esteemed nuclear physicist Edward Teller resurfaced the idea in a 1995 paper that once again attracted little actual interest from the industry — that is, until 2006, when Lowell Wood, a physicist at the Lawrence Livermore National Laboratory, proposed building an underground reactor to Bill Gates, who considered but ultimately abandoned the design at his nuclear startup, TerraPower.
Now, at last, one company is working to make buried reactors a reality.
Deep Fission proposes digging boreholes 30 inches in diameter and about a mile deep to house each of its 15-megawatt reactors. And it’s making progress. In August, the Department of Energy selected Deep Fission as one of the 10 companies enrolled in the agency’s new reactor pilot program, meant to help next-generation startups split their first atoms by July. In September, the company announced a $30 million reverse merger deal with a blank check firm to make its stock market debut on the lesser-known exchange OTCQB. Last month, Deep Fission chose an industrial park in a rural stretch of southeastern Kansas as the site of its first power plant.
Based in Berkeley, California, the one-time hub of the West Coast’s fading anti-nuclear movement, the company says its design is meant to save money on above-ground infrastructure by letting geology do the work to add “layers of natural containment” to “enhance safety.” By eliminating much of that expensive concrete and steel dome that encases the reactor on the surface, the startup estimates “that our approach removes up to 80% of the construction cost, one of the biggest barriers for nuclear, and enables operation within six months of breaking ground.”
“The primary benefit of placing a reactor a mile deep is cost and speed,” Chloe Frader, Deep Fission’s vice president of strategic affairs, told me. “By using the natural pressure and containment of the Earth, we eliminate the need for the massive, above-ground structures that make traditional nuclear expensive and slow to build.”
“Nuclear power is already the safest energy source in the world. Period,” she said. “Our underground design doesn’t exist because nuclear is unsafe, it exists because we can make something that is already extremely safe even safer, simpler, and more affordable.”
But gaining government recognition, going public, and picking a location for a first power plant may prove the easy part. Convincing others in the industry that its concept is a radical plan to cut construction costs rather than allay the public’s often-outsize fear of a meltdown has turned out to be difficult, to say nothing of what actually building its reactors will entail.
Despite the company’s recent progress, I struggled to find anyone who didn’t have a financial stake in Deep Fission willing to make the case for its buried reactors.
Deep Fission is “solving a problem that doesn't actually exist,” Seth Grae, the chief executive of the nuclear fuel company Lightbridge, told me. In the nearly seven decades since fission started producing commercial electrons on the U.S. grid, no confirmed death has ever come from radiation at a nuclear power station.
“You’re trying to solve a political problem that has literally never hurt anyone in the entire history of our country since this industry started,” he said. “You’re also making your reactors more expensive. In nuclear, as in a lot of other projects, when you build tall or dig deep or lift big and heavy, those steps make the projects much more expensive.”
Frader told me that subterranean rock structures would serve “as natural containment, which also enhances safety.” That’s true to some extent. Making use of existing formations “could simplify surface infrastructure and streamline construction,” Leslie Dewan, a nuclear engineer who previously led a next-generation small modular reactor startup, told IEEE Spectrum.
If everything pans out, that could justify Deep Fission’s estimate that its levelized cost of electricity — not the most dependable metric, but one frequently used by solar and wind advocates — would be between $50 and $70 per megawatt-hour, lower than other SMR developers’ projections. But that’s only if a lot of things go right.
“A design that relies on the surrounding geology for safety and containment needs to demonstrate a deep understanding of subsurface behavior, including the stability of the rock formations, groundwater movement, heat transfer, and long-term site stability,” Dewan said. “There are also operational considerations around monitoring, access, and decommissioning. But none of these are necessarily showstoppers: They’re all areas that can be addressed through rigorous engineering and thoughtful planning.”
As anyone in the geothermal industry can tell you, digging a borehole costs a lot of money. Drilling equipment comes at a high price. Underground geology complicates a route going down one mile straight. And not every hole that’s started ends up panning out, meaning the process must be repeated over and over again.
For Deep Fission, drilling lots of holes is part of the process. Given the size of its reactor, to reach a gigawatt — the output of one of Westinghouse’s flagship AP1000s, the only new type of commercial reactor successfully built from scratch in the U.S. this century — Deep Fission would need to build 67 of its own microreactors. That’s a lot of digging, considering that the diameters of the company’s boreholes are on average nearly three times wider than those drilled for harvesting natural gas or geothermal.
The company isn’t just distinguished by its unique approach. Deep Fission has a sister company, Deep Isolation, that proposes burying spent nuclear fuel in boreholes. In April, the two startups officially partnered in a deal that “enables Deep Fission to offer an end-to-end solution that includes both energy generation and long-term waste management.”
In theory, that combination could offer the company a greater social license among environmental skeptics who take issue with the waste generated from a nuclear plant.
In 1982, Congress passed a landmark law making the federal government responsible for the disposal of all spent fuel and high-level radioactive waste in the country. The plan centered on building a giant repository to permanently entomb the material where it could remain undisturbed for thousands of years. The law designated Yucca Mountain, a rural site in southwestern Nevada near the California border, as the exclusive location for the debut repository.
Construction took years to start. After initial work got underway during the Bush administration, Obama took office and promptly slashed all funding for the effort, which was opposed by then-Senate Majority Leader Harry Reid of Nevada; the nonpartisan Government Accountability Office clocked the move as a purely political decision. Regardless of the motivation, the cancellation threw the U.S. waste disposal strategy into limbo because the law requires the federal government to complete Yucca Mountain before moving on to other potential storage sites. Until that law changes, the U.S. effort to find a permanent solution to nuclear waste remains in limbo, with virtually all the spent fuel accumulated over the years kept in intermediate storage vessels on site at power plants.
Finland finished work on the world’s first such repository in 2024. Sweden and Canada are considering similar facilities. But in the U.S., the industry is moving beyond seeing its spent fuel as waste, as more companies look to start up a recycling industry akin to those in Russia, Japan, and France to reprocess old uranium into new pellets for new reactors. President Donald Trump has backed the effort. The energy still stored in nuclear waste just in this country is sufficient to power the U.S. for more than a century.
Even if Americans want an answer to the nuclear waste problem, there isn’t much evidence to suggest they want to see the material stored near their homes. New Mexico, for example, passed a law barring construction of an intermediate storage site in 2023. Texas attempted to do the same, but the Supreme Court found the state’s legislation to be in violation of the federal jurisdiction over waste.
While Deep Fission’s reactors would be “so far removed from the biosphere” that the company seems to think the NRC will just “hand out licenses and the public won’t worry,” said Nick Touran, a veteran engineer whose consultancy, What Is Nuclear, catalogs reactor designs and documents from the industry’s history.
“The assumption that it’ll be easy and cheap to site and license this kind of facility is going to be found to be mistaken,” he told me.
The problem with nuclear power isn’t the technology, Brett Rampal, a nuclear expert at the consultancy Veriten, told me. “Nuclear has not been suffering from a technological issue. The technology works great. People do amazing things with it, from curing cancer to all kinds of almost magical energy production,” he told me. “What we need is business models and deployment models.”
Digging a 30-inch borehole a mile deep would be expensive enough, but Rampal also pointed out that lining those shafts with nuclear-grade steel and equipping them with cables would likely pencil out to a higher price than building an AP1000 — but with one one-hundredth of the power output.
Deep Fission insists that isn’t the case, and that the natural geology “removes the need for complex, costly pressure vessels and large engineered structures” on the surface.
“We still use steel and engineered components where necessary, but the total material requirements are a fraction of those used in a traditional large-scale plant,” Frader said.
Ultimately, burying reactors is about quieting concerns that should be debunked head on, Emmet Penney, a historian of the industry and a senior fellow at the Foundation for American Innovation, a right-leaning think tank that advocates building more reactors in the U.S., told me.
“Investors need to wake up and realize that nuclear is one of the safest power sources on the planet,” Penney said. “Otherwise, goofy companies will continue to snow them with slick slide decks about solving non-issues.”
On energy efficiency rules, Chinese nuclear, and Japan’s first offshore wind
Current conditions: Warm air headed northward up the East Coast is set to collide with cold air headed southward over the Great Lakes and Northeast, bringing snowfall followed by higher temperatures later in the week • A cold front is stirring up a dense fog in northwest India • Unusually frigid Arctic air in Europe is causing temperatures across northwest Africa to plunge to double-digit degrees below seasonal norms, with Algiers at just over 50 degrees Fahrenheit this week.

Oil prices largely fell throughout 2025, capping off December at their lowest level all year. Spot market prices for Brent crude, the leading global benchmark for oil, dropped to $63 per barrel last month. The reason, according to the latest analysis of the full year by the Energy Information Administration, is oversupply in the market. China’s push to fill its storage tanks kept prices from declining further. Israel’s June 13 strikes on Iran and attacks on oil infrastructure between Russia and Ukraine briefly raised prices throughout the year. But the year-end average price still came in at $69 per barrel, the lowest since 2020, even when adjusted for inflation.

The price drop bodes poorly for reviving Venezuela’s oil industry in the wake of the U.S. raid on Caracas and arrest of the South American country’s President Nicolás Maduro. At such low levels, investments in new infrastructure are difficult to justify. “This is a moment where there’s oversupply,” oil analyst Rory Johnston told my colleague Matthew Zeitlin yesterday. “Prices are down. It’s not the moment that you’re like, I’m going to go on a lark and invest in Venezuela.”
The Energy Department granted a Texas company known for recycling defunct tools from oil and gas drilling an $11.5 million grant to fund an expansion of its existing facility in a rural county between San Antonio and Dallas. The company, Amermin, said the funding will allow it to increase its output of tungsten carbide by 300%, “reducing our reliance on foreign nations like China, which produces 83%” of the world’s supply of the metal used in all kinds of defense, energy, and hardware applications. “Our country cannot afford to rely on our adversaries for the resources that power our energy industry,” Representative August Pfluger, a Texas Republican, said in a statement. “This investment strengthens our district’s role in American energy leadership while providing good paying jobs to Texas families.”
That wasn’t the agency’s only big funding announcement. The Energy Department gave out $2.7 billion in contracts for enriched uranium, with $900 million each to Maryland-based Centrus Energy, the French producer Orano, and the California-headquartered General Matter. “President Trump is catalyzing a resurgence in the nation’s nuclear energy sector to strengthen American security and prosperity,” Secretary of Energy Chris Wright said in a press release. “Today’s awards show that this Administration is committed to restoring a secure domestic nuclear fuel supply chain capable of producing the nuclear fuels needed to power the reactors of today and the advanced reactors of tomorrow.”
Low-income households in the United States pay roughly 30% more for energy per square foot than households who haven’t faced trouble paying for electricity and heat in the past, federal data shows. Part of the problem is that the national efficiency standards for one of the most affordable types of housing in the nation, manufactured homes, haven’t been updated since 1994. Congress finally passed a law in 2007 directing the Department of Energy to raise standards for insulation, and in 2022, the Biden administration proposed new rules to increase insulation and reduce air leaks. But the regulations had yet to take effect when President Donald Trump returned to office last year. Now the House of Representatives is prepared to vote on legislation to nullify the rules outright, preserving the standards set more than three decades ago. The House Committee on Rules is set to vote on advancing the bill as early as Tuesday night, with a full floor vote likely later in the week. “You’re just locking in higher bills for years to come if you give manufacturers this green light to build the homes with minimal insulation,” Mark Kresowik, senior policy director of the American Council for an Energy-Efficient Economy, told me.
Sign up to receive Heatmap AM in your inbox every morning:
The newest reactor at the Zhangzhou nuclear station in Fujian Province has officially started up commercial operation as China’s buildout of new atomic power infrastructure picks up pace this year. The 1,136-megawatt Hualong One represents China’s leading indigenous reactor design. Where once Beijing preferred the top U.S. technology for large-scale reactors, the Westinghouse AP1000, the Hualong One’s entirely domestic supply chain and design that borrows from the American standard has made China’s own model the new leader.
In a sign of just how many reactors China is building — at least 35 underway nationwide, as I noted in yesterday’s newsletter — the country started construction on two more the same week the latest Hualong One came online. World Nuclear News reported that first concrete has been poured for a pair of CAP1000 reactors, the official Chinese version of the Westinghouse AP1000, at two separate plants in southern China.
Back in October, when Japan elected Sanae Takaichi as its first female prime minister, I told you about how the arch-conservative leader of the Liberal Democratic Party planned to refocus the country’s energy plans on reviving the nuclear industry. But don’t count out offshore wind. Unlike Europe’s North Sea or the American East Coast, the sharp continental drop in Japan’s ocean makes rooting giant turbines to the sea floor impossible along much of its shoreline. But the Goto Floating Wind Farm — employing floating technology under consideration on the U.S. West Coast, too — announced the start of commercial operations this week, pumping nearly 17 megawatts of power onto the Japanese grid. Japanese officials last year raised the country’s goal for installed capacity of offshore wind to 10 gigawatts by 2030 and 45 gigawatts by 2040, Power magazine noted, so the industry still has a long way to go.
Beavers may be the trick to heal nature’s burn scars after a wildfire. A team of scientists at the U.S. Forest Service and Colorado State University are building fake beaver dams in scorched areas to study how wetlands created by the dams impact the restoration of the ecosystem and water quality after a blaze. “It’s kind of a brave new world for us with this type of work,” Tim Fegel, a doctoral candidate at Colorado State, who led the research, said in a press release.
Rob talks about the removal of Venezuela’s Nicolás Maduro with Commodity Context’s Rory Johnston.
Over the weekend, the U.S. military entered Venezuela and captured its president, Nicolás Maduro, and his wife. Maduro will now face drug and gun charges in New York, and some members of the Trump administration have described the operation as a law enforcement mission.
President Donald Trump has taken a different tack. He has justified the operation by asserting that America is going to “take over” Venezuela’s oil reserves, even suggesting that oil companies might foot the bill for the broader occupation and rebuilding effort. Trump officials have told oil companies that the U.S. might not help them recover lost assets unless they fund the American effort now, according to Politico.
Such a move seems openly imperialistic, ill-advised, and unethical — to say the least. But is it even possible? On this week’s episode of Shift Key, Rob talks to Rory Johnston, a Toronto-based oil markets analyst and the founder of Commodity Context. They discuss the current status of the Venezuelan oil industry, what a rebuilding effort would cost, and whether a reopened Venezuelan oil industry could change U.S. energy politics — or even, as some fear, bring about a new age of cheap fossil fuels.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: First of all, does Venezuela have the world’s largest hydrocarbon reserves — like, proven hydrocarbon reserves? And number two, let’s say that Trump has made some backdoor deal with the existing regime, that these existing issues are ironed ou to actually use those reserves. What kind of investment are we talking about on that end?
Rory Johnston: The mucky answer to this largest reserve question is, there’s lots of debate. I will say there’s a reasonable claim that at one point Venezuela — Venezuela has a lot of oil. Let’s just say it that way: Venezuela has a lot of oil, particularly the Orinoco Belt, which, again, similar to the oil sands we’re talking about —
Meyer: This is the Orinoco flow. We’re going to call this the Orinoco flow question.
Johnston: Yeah, exactly, that. Similar to the Canadian oil sands, we’re talking about more than a trillion barrels of oil in place, the actual resource in the ground. But then from there you get to this question of what is technically recoverable. Then from there, what is economically recoverable? The explosion in, again, both Venezuelan and Canadian reserve estimates occurred during that massive boom in oil prices in the mid-2000s. And that created the justification for booking those as reserves rather than just resources.
So I think that there is ample — in the same way, like, Russia and the United States don’t actually have super impressive-looking reserves on paper, but they do a lot with them, and I think in actuality that matters a lot more than the amount of technical reserves you have in the ground. Because as we’ve seen, Venezuela hasn’t been able to do much with those reserves.
So in order to, how to actually get that operating, this is where we get back to the — we’re talking tens, hundreds of billions of dollars, and a lot of time. And these companies are not going to do that without seeing a track record of whatever government replaces the current. The current vice president, his acting president — which I should also note, vice president and oil minister, which I think is particularly relevant here — so I think there’s lots that needs to happen. But companies are not going to trip over themselves to expose themselves to this risk. We still don’t know what the future is going to look like for Venezuela.
Mentioned:
The 4 Things Standing Between the U.S. and Venezuela’s Oil
Trump admin sends tough private message to oil companies on Venezuela
Previously on Shift Key: The Trump Policy That Would Be Really Bad for Oil Companies
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.