You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Here’s what we know so far, including what’s changed since last year.
The Biden administration announced final new emissions standards for cars on Wednesday, significantly curtailing both the carbon dioxide and the toxic soot and chemicals that spew from the tailpipes of the nation’s light- and medium-duty vehicles.
With that, Biden is checking off one of the two most important pieces of unfinished climate business he has left on his first term to-do list. The rules tighten pollution limits gradually over six years, beginning in 2027. In concert with other Biden policies including consumer tax credits for electric vehicles purchases, initiatives to build out charging infrastructure, and support for domestic manufacturing, the standards will help accelerate the transition to electric vehicles that is already well underway.
Transportation is responsible for more planet-warming emissions than any other part of the U.S. economy. To get the country on the path of reaching net zero emissions by 2050, as Biden has set out to do, curbing car emissions is unavoidable.
When the rules were originally proposed last year, we wrote that they would “roughly halve carbon pollution from America’s massive car and truck fleet, the world’s third largest, within a decade.” That’s still broadly the case, even though the final version features one big change: Automakers will now have more time to cut emissions from their fleets. They will still have to achieve the same standard in 2032 as what was originally proposed, but they can transition to it more slowly.
Ahead of the official release, senior administration officials downplayed the significance of the slower rollout. They argued that giving automakers, dealers, and labor unions more time in the near-term would make for a sturdier rule, and that the cumulative emissions benefits of the final standard converge with the original proposal. At a White House event on Wednesday, members of the president’s climate team built on that message, framing the new rules not as a government mandate but rather as a tool to give consumers more of what they already want. “We are witnessing a technological revolution driven by the markets,” Environmental Protection Agency administrator Michael Regan proclaimed.
Also speaking at the event was John Bozzella, head of the Alliance for Automotive Innovation, which represents most U.S. automakers, including the Big Three. Bozzella praised the administration for heeding the industry’s concerns over the original proposal’s rapid phase-in and said the new rules were “much improved” from what had initially been proposed. “Pace matters to automakers,” he said. “It certainly matters to consumers.”
The full rule was released mid-day Wednesday, and we’re digging through it to find out exactly what else has changed. But here’s what we know so far.
The rules strengthen greenhouse gas emission limits, in terms of grams of CO2 per mile, that automakers will have to adhere to, on average, across their product lines. They also tighten limits on dangerous pollutants, including particulate matter — the tiny bits that make up soot — and nitrogen oxides.
This chart shows how the cuts in the final rule compare to those proposed in the draft rule. The version released last April required automakers to make steeper reductions to carbon emissions in the first three years, while the final rule allows for a more gradual reduction.
No. They are what’s called technology-neutral standards, meaning that automakers have options for how to comply with them. Since automakers have to meet the emissions targets on average across their fleets, rather than for each vehicle, it’s likely they’ll produce a range of options in 2032, including plug-in hybrids, regular hybrids, and even some gas cars with improved efficiency — though their fleets will probably have a much higher proportion of EVs than they do now.
While that generally hasn’t changed from the preliminary rule, the Biden administration’s messaging around it has.
When it released the initial proposal, the EPA emphasized that the least-cost path to achieving the standards would be for about two-thirds of new vehicles sold in 2032 to be electric. Although this was just one potential scenario, it was widely interpreted as a target or even a mandate — particularly by Biden’s political opponents.
On Tuesday, administration officials said that the two-thirds finding had been based on limited data. The EPA now estimates that EVs may make up anywhere between 30% and 56% of new light-duty sales from model years 2030 to 2032.
By 2032, the light-duty fleet on offer from automakers will emit half as much carbon as vehicles on the market in 2026.
The EPA estimates that these rules will avoid 7.2 billion metric tons of carbon from 2027 to 2055, which accounts for the vehicles’ full lifetime on the road. That’s slightly less than the 7.3 billion metric tons the initial proposal would have avoided.
The rules will change the mix of vehicles sold by automakers, encouraging dealers to sell more hybrid, plug-in hybrid, and battery electric vehicles. They’re also expected to save Americans roughly $62 billion in fuel costs and avoided maintenance costs, since the EPA assumes that EVs are still cheaper to operate and maintain. On average, a consumer will save about $6,000 over the lifetime of a 2032 vehicle compared to one sold in 2026, according to the agency.
The tailpipe rule will likely increase the cost of building each vehicle, which could translate into higher prices for consumers. However, state and federal tax incentives — as well as the cheaper cost of operating and fueling EVs — will offset that increase.
The rules are projected to deliver major health and environmental benefits to the public. The EPA estimates they will produce $37 billion in benefits from improved public health and climate mitigation, including avoided hospitalizations and premature deaths.
This is what the EPA was created to do — use the best available science to protect human health and the environment. But even after decades of improvements in air quality, there is still a lot of room for improvement. More than one third of the population still live in places with unhealthy levels of ozone or particulate pollution, according to The American Lung Association’s most recent “ state of the air” report. The risks are deeply unequal, with people of color making up half of those exposed. The report also noted that climate change is making it harder to protect people, as heat, drought, and wildfires increasingly lead to spikes in these pollutants. Altogether, ozone and particulate matter are responsible for more than 60,000 premature deaths annually, according to the Health Effects Institute, a nonprofit, independent research organization funded by the EPA and automakers.
Officials stressed that EV sales are already shattering analyst predictions, prices are dropping, and product availability is growing. They see this rule as part of a larger ecosystem of policies — including those in the Inflation Reduction Act, the Bipartisan Infrastructure Law, and the CHIPS and Science Act — that are revitalizing American manufacturing and creating jobs while also contributing to the global fight against climate change. The EPA’s press release notes that companies have announced more than $160 billion in domestic clean vehicle manufacturing, and that the auto manufacturing sector as a whole has added more than 100,000 jobs since Biden took office.
The administration is also, perhaps less loudly, selling the pollution standards as a path to freedom from fossil fuels. During the press call Tuesday, a senior administration official said the rules would enable consumers to break loose from the oil industry’s grip on how we get around and how much it costs us.
The new rules kick in for cars in model year 2027, which will go on sale in 2026 and are being designed right now. Although the Biden administration has suggested that the new rules have won the support of the car industry — including automakers, labor unions, and dealerships — it could still face a court challenge from attorneys general in Republican-controlled states. Republican officials have repeatedly sued to block the Biden administration’s climate policies.
It’s unclear how the Supreme Court would respond to such a challenge. Although the Court has long backed the EPA’s ability to limit climate pollution from cars and trucks, its hard-right majority has recently rolled back what were once thought to be bedrock environmental laws. In this term alone, the Court seems likely to restrict the EPA’s ability to regulate toxic air pollution while sweeping away a central legal doctrine of environmental regulation.
Editor’s note: This story has been updated to reflect the White House event announcing the new rules.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: More than 300,000 people in Louisiana are without power after Hurricane Francine • Hungarian lawmakers met in a dried riverbed yesterday to draw attention to the country’s extreme drought • An Arctic blast could bring snow to parts of the U.K.
More than 60 scientists have co-authored a new study, published in The Lancet Planetary Health, warning that human activity is damaging the natural systems that support life on Earth. Almost all of these support systems – including the climate, soil nutrient cycles, and freshwater – have been pushed into danger zones as humans strive for ever more economic growth. Thus, the researchers say, the health of the planet and its people are at risk, and the poor are the most vulnerable. The study concludes “fundamental system-wide transformations are needed” to address overconsumption, overhaul economic systems, improve technologies, and transform governance.
The Lancet
Carmaker Stellantis announced yesterday it is pouring more than $400 million into three facilities in Michigan to ramp up electric vehicle production and boost the company’s “multi-energy strategy.” The Sterling Heights Assembly Plant will be Stellantis’ first U.S. facility to build a fully electric vehicle, the Ram 1500 REV. The Warren Truck Assembly Plant will be “retooled” to produce the upcoming electric Jeep Wagoneer. And the Dundee Engine Plant will be upgraded for parts production for the company’s STLA Frame architecture. As The Associated Pressexplained, Stellantis “is taking a step toward meeting some commitments that it agreed to in a new contract ratified last fall by the United Auto Workers union after a bitter six-week strike.” The company is aiming for 50% of its passenger car and light-duty truck sales in the U.S. to be electric by 2030.
Police arrested a 34-year-old man suspected of starting a wildfire in California that has now burned more than 36,000 acres and is less than 20% contained. The Line fire is one of several large blazes burning in the state and threatening thousands of structures. Last month another man was charged with arson on suspicion of igniting the Park fire, which consumed 430,000 acres in Northern California. As Heatmap’s Jeva Lange reported, arson officially accounts for only about 10% of fires handled by Cal Fire. But when there are thousands of fires across the state during a given season, that’s not an inconsequential number. And a warmer world has made extreme fire conditions more common, as have decades of misbegotten fire suppression policies in the Western United States. As a result, arson fires in rural areas are more likely to burn out of control than they would have been half a century ago, Lange wrote. Experts warn that California’s fire season, fueled by “weather whiplash,” is only just ramping up and is likely to intensify with the arrival of the Santa Ana winds.
Brazil’s President Luiz Inácio Lula da Silva has pledged to finish the paving of a controversial road through the Amazon rainforest. The BR-319 highway would connect some major cities and improve cargo movement, which has been disrupted by record-low water levels in the Amazon River due to drought. But its construction could also hasten deforestation, including in old growth forests. “Without the forest, there is no water, it’s interconnected,” said Suely Araújo, a public policy coordinator. “The paving of the middle section of BR-319, without ensuring environmental governance and the presence of the government in the region, will lead to historic deforestation, as pointed out by many specialists and by Brazil’s federal environmental agency in the licensing process.” Lula made the pledge during a visit to assess the damage from massive fires in the rainforest, which his Environment Minister Marina Silva blamed on extreme drought caused by climate change.
A new survey of more than 1,000 EV owners in California has some interesting insights into what these drivers want from a charging station. It found they were 37% more likely to choose a charger with additional amenities like restrooms and convenience stores. “This symbiotic relationship between businesses and EV chargers may benefit both EV chargers and local businesses,” said Alan Jenn, assistant professor at the Electric Vehicle group of the Institute of Transportation Studies at UC Davis.
Next 10
Also, California’s EV drivers really don’t want to wait to charge up, and are willing to pay almost a dollar more per 100 miles of charge if there’s no wait time at the charger. With every minute of extra wait time, a driver’s willingness to use a charger falls by 6%. The survey was conducted by the non-profit Next 10 and the Institute for Transportation Studies at UC Davis.
“If Harris is now bragging about her administration’s support for fossil fuels, if she is casting the Inflation Reduction Act as a law that helped fracking, that means climate activists have much more work to do to persuade the public on what they believe. The Democratic Party’s candidate will not do that persuasion for them.” –Heatmap’s Robinson Meyer on Kamala Harris’ energy playbook.
The rapid increase in demand for artificial intelligence is creating a seemingly vexing national dilemma: How can we meet the vast energy demands of a breakthrough industry without compromising our energy goals?
If that challenge sounds familiar, that’s because it is. The U.S. has a long history of rising to the electricity demands of innovative new industries. Our energy needs grew far more quickly in the four decades following World War II than what we are facing today. More recently, we have squared off against the energy requirements of new clean technologies that require significant energy to produce — most notably hydrogen.
Courtesy of Rhodium Group
The lesson we have learned time and again is that it is possible to scale technological innovation in a way that also scales energy innovation. Rather than accepting a zero-sum trade-off between innovation and our clean energy goals, we should focus on policies that leverage the growth of AI to scale the growth of clean energy.
At the core of this approach is the concept of additionality: Companies operating massive data centers — often referred to as “hyperscalers” — as well as utilities should have incentives to bring online new, additional clean energy to power new computing needs. That way, we leverage demand in one sector to scale up another. We drive innovation in key sectors that are critical to our nation’s competitiveness, we reward market leaders who are already moving in this direction with a stable, long-term regulatory framework for growth, and we stay on track to meet our nation’s climate commitments.
All of this is possible, but only if we take bold action now.
AI technologies have the potential to significantly boost America’s economic productivity and enhance our national security. AI also has the potential to accelerate the energy transition itself, from optimizing the electricity grid, to improving weather forecasting, to accelerating the discovery of chemicals and material breakthroughs that reduce reliance on fossil fuels. Powering AI, however, is itself incredibly energy intensive. Projections suggest that data centers could consume 9% of U.S. electricity generation by 2030, up from 4% today. Without a national policy response, this surge in energy demand risks increasing our long-term reliance on fossil fuels. By some estimates, around 20 gigawatts of additional natural gas generating capacity will come online by 2030, and coal plant retirements are already being delayed.
Avoiding this outcome will require creative focus on additionality. Hydrogen represents a particularly relevant case study here. It, too, is energy-intensive to produce — a single kilogram of hydrogen requires double the average household’s electricity consumption. And while hydrogen holds great promise to decarbonize parts of our economy, hydrogen is not per se good for our clean energy goals. Indeed, today’s fossil fuel-driven methods of hydrogen production generate more emissions than the entire aviation sector. While we can make zero-emissions hydrogen by using clean electricity to split hydrogen from water, the source of that electricity matters a lot. Similar to data centers, if the power for hydrogen production comes from the existing electricity grid, then ramping up electrolytic production of hydrogen could significantly increase emissions by growing overall energy demand without cleaning the energy mix.
This challenge led to the development of an “additionality” framework for hydrogen. The Inflation Reduction Act offers generous subsidies to hydrogen producers, but to qualify, they must match their electricity consumption with additional (read: newly built) clean energy generation close enough to them that they can actually use it.
This approach, which is being refined in proposed guidance from the U.S. Treasury Department, is designed to make sure that hydrogen’s energy demand becomes a catalyst for investment in new clean electricity generation and decarbonization technologies. Industry leaders are already responding, stating their readiness to build over 50 gigawatts of clean electrolyzer projects because of the long term certainty this framework provides.
While the scale and technology requirements are different, meeting AI’s energy needs presents a similar challenge. Powering data centers from the existing electricity grid mix means that more demand will create more emissions; even when data centers are drawing on clean electricity, if that energy is being diverted from existing sources rather than coming from new, additional clean electricity supply, the result is the same. Amazon’s recent $650 million investment in a data center campus next to an existing nuclear power plant in Pennsylvania illustrates the challenge: While diverting those clean electrons from Pennsylvania homes and businesses to the data center reduces Amazon’s reported emissions, by increasing demand on the grid without building additional clean capacity, it creates a need for new capacity in the region that will likely be met by fossil fuels (while also shifting up to $140 million of additional costs per year onto local customers).
Neither hyperscalers nor utilities should be expected to resolve this complex tension on their own. As with hydrogen, it is in our national interest to find a path forward.
What we need, then, is a national solution to make sure that as we expand our AI capabilities, we bring online new clean energy, as well, strengthening our competitive position in both industries and forestalling the economic and ecological consequences of higher electricity prices and higher carbon emissions.
In short, we should adopt a National AI Additionality Framework.
Under this framework, for any significant data center project, companies would need to show how they are securing new, additional clean power from a zero-emissions generation source. They could do this either by building new “behind-the-meter” clean energy to power their operations directly, or by partnering with a utility to pay a specified rate to secure new grid-connected clean energy coming online.
If companies are unwilling or unable to secure dedicated additional clean energy capacity, they would pay a fee into a clean deployment fund at the Department of Energy that would go toward high-value investments to expand clean electricity capacity. These could range from research and deployment incentives for so-called “clean firm” electricity generation technologies like nuclear and geothermal, to investments in transmission capacity in highly congested areas, to expanding manufacturing capacity for supply-constrained electrical grid equipment like transformers, to cleaning up rural electric cooperatives that serve areas attractive to data centers. Given the variance in grid and transmission issues, the fund would explicitly approach its investment with a regional lens.
Several states operate similar systems: Under Massachusetts’ Renewable Portfolio Standard, utilities are required to provide a certain percentage of electricity they serve from clean energy facilities or pay an “alternative compliance payment” for every megawatt-hour they are short of their obligation. Dollars collected from these payments go toward the development and expansion of clean energy projects and infrastructure in the state. Facing increasing capacity constraints on the PJM grid, Pennsylvania legislators are now exploring a state Baseload Energy Development Fund to provide low-interest grants and loans for new electricity generation facilities.
A national additionality framework should not only challenge the industry to scale innovation in a way that scales clean technology, it must also clear pathways to build clean energy at scale. We should establish a dedicated fast-track approval process to move these clean energy projects through federal, state, and local permitting and siting on an accelerated basis. This will help companies already investing in additional clean energy to move faster and more effectively – and make it more difficult for anyone to hide behind the excuse that building new clean energy capacity is too hard or too slow. Likewise, under this framework, utilities that stand in the way of progress should be held accountable and incentivized to adopt innovative new technologies and business models that enable them to move at historic speed.
For hyperscalers committed to net-zero goals, this national approach provides both an opportunity and a level playing field — an opportunity to deliver on those commitments in a genuine way, and a reliable long-term framework that will reward their investments to make that happen. This approach would also build public trust in corporate climate accountability and diminish the risk that those building data centers in the U.S. stand accused of greenwashing or shifting the cost of development onto ratepayers and communities. The policy clarity of an additionality requirement can also encourage cutting edge artificial intelligence technology to be built here in the United States. Moreover, it is a model that can be extended to address other sectors facing growing energy demand.
The good news is that many industry players are already moving in this direction. A new agreement between Google and a Nevada utility, for example, would allow Google to pay a higher rate for 24/7 clean electricity from a new geothermal project. In the Carolinas, Duke Energy announced its intent to explore a new clean tariff to support carbon-free energy generation for large customers like Google and Microsoft.
A national framework that builds on this progress is critical, though it will not be easy; it will require quick Congressional action, executive leadership, and new models of state and local partnership. But we have a unique opportunity to build a strange bedfellow coalition to get it done – across big tech, climate tech, environmentalists, permitting reform advocates, and those invested in America’s national security and technology leadership. Together, this framework can turn a vexing trade-off into an opportunity. We can ensure that the hundreds of billions of dollars invested in building an industry of the future actually accelerates the energy transition, all while strengthening the U.S.’s position in innovating cutting- edge AI and clean energy technology.
Almost half of developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
The solar energy industry has a big farm problem cropping up. And if it isn’t careful, it’ll be dealing with it for years to come.
Researchers at SI2, an independent research arm of the Solar Energy Industries Association, released a study of farm workers and solar developers this morning that said almost half of all developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
Unveiled in conjunction with RE+, the largest renewable energy conference in the U.S., the federally-funded research includes a warning sign that permitting is far and away the single largest impediment for solar developers trying to build projects on farmland. If this trend continues or metastasizes into a national movement, it could indefinitely lock developers out from some of the nation’s best land for generating carbon-free electricity.
“If a significant minority opposes and perhaps leads to additional moratoria, [developers] will lose a foot in the door for any future projects,” Shawn Rumery, SI2’s senior program director and the survey lead, told me. “They may not have access to that community any more because that moratoria is in place.”
SI2’s research comes on the heels of similar findings from Heatmap Pro. A poll conducted for the platform last month found 70% of respondents who had more than 50 acres of property — i.e. the kinds of large landowners sought after by energy developers — are concerned that renewable energy “takes up farmland,” by far the greatest objection among that cohort.
Good farmland is theoretically perfect for building solar farms. What could be better for powering homes than the same strong sunlight that helps grow fields of yummy corn, beans and vegetables? And there’s a clear financial incentive for farmers to get in on the solar industry, not just because of the potential cash in letting developers use their acres but also the longer-term risks climate change and extreme weather can pose to agriculture writ large.
But not all farmers are warming up to solar power, leading towns and counties across the country to enact moratoria restricting or banning solar and wind development on and near “prime farmland.” Meanwhile at the federal level, Republicans and Democrats alike are voicing concern about taking farmland for crop production to generate renewable energy.
Seeking to best understand this phenomena, SI2 put out a call out for ag industry representatives and solar developers to tell them how they feel about these two industries co-mingling. They received 355 responses of varying detail over roughly three months earlier this year, including 163 responses from agriculture workers, 170 from solar developers as well as almost two dozen individuals in the utility sector.
A key hurdle to development, per the survey, is local opposition in farm communities. SI2’s publicity announcement for the research focuses on a hopeful statistic: up to 70% of farmers surveyed said they were “open to large-scale solar.” But for many, that was only under certain conditions that allow for dual usage of the land or agrivoltaics. In other words, they’d want to be able to keep raising livestock, a practice known as solar grazing, or planting crops unimpeded by the solar panels.
The remaining percentage of farmers surveyed “consistently opposed large-scale solar under any condition,” the survey found.
“Some of the messages we got were over my dead body,” Rumery said.
Meanwhile a “non-trivial” number of solar developers reported being unwilling or disinterested in adopting the solar-ag overlap that farmers want due to the increased cost, Rumery said. While some companies expect large portions of their business to be on farmland in the future, and many who responded to the survey expect to use agrivoltaic designs, Rumery voiced concern at the percentage of companies unwilling to integrate simultaneous agrarian activities into their planning.
In fact, Rumery said some developers’ reticence is part of what drove him and his colleagues to release the survey while at RE+.
As we discussed last week, failing to address the concerns of local communities can lead to unintended consequences with industry-wide ramifications. Rumery said developers trying to build on farmland should consider adopting dual-use strategies and focus on community engagement and education to avoid triggering future moratoria.
“One of the open-ended responses that best encapsulated the problem was a developer who said until the cost of permitting is so high that it forces us to do this, we’re going to continue to develop projects as they are,” he said. “That’s a cold way to look at it.”
Meanwhile, who is driving opposition to solar and other projects on farmland? Are many small farm owners in rural communities really against renewables? Is the fossil fuel lobby colluding with Big Ag? Could building these projects on fertile soil really impede future prospects at crop yields?
These are big questions we’ll be tackling in far more depth in next week’s edition of The Fight. Trust me, the answers will surprise you.