You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
“When the land gets abandoned, the grasses are the first invaders. All you need is a little drought to have a flammable landscape.”
Researchers and scientists have been tracking and anticipating more frequent and larger wildfires across Hawaii for years. While the speed and scale of the wildfire that devastated Lahaina and killed at least 36 people this week was a surprise, the fact that the state, Maui, and especially the western part of the island was susceptible to fires was not.
In 2019, fire burned some 25,000 acres on the island. A government report on the 2019 fires concluded that “Wild/brush/forest fires present a growing threat to Maui County citizen safety and property. Island communities are particularly vulnerable because populations tend to be clustered and dependent on single highways, often located on the island edge,” almost directly anticipating the disaster in Lahaina.
Research by Clay Trauernicht, a fire specialist at the University of Hawaii, and others has shown that the scale and frequency of wildfires have been increasing across in Hawaii from the early 1900s to the 2010s. The researchers also identified a major culprit: non-native plants.
“Wildfires were most frequent in developed areas, but most areas burned occurred in dry non-native grasslands and shrublands that currently compose 24 percent of Hawaii’s total land cover,” the researchers wrote. “These grass-dominated landscapes allow wildfires to propagate rapidly.”
Get one great climate story in your inbox every day:
The non-native grasses were brought to Hawaii by cattle ranchers in the 19th century, University of California Santa Barbara ecologist Carla D’Antonio told me. “They were selected because they were drought tolerant.”
They are also invasive. The abandoned sugar and pineapple farms across the state are quickly taken over by non-native grasses. “When the land gets abandoned, the grasses are the first invaders. All you need is a little drought to have a flammable landscape.” Maui is currently in a drought.
The grasses are an especially potent fuel, D'Antonio explained, because they grow quickly when it rains and then stick around, deeply rooted into the soil, as dry, dead organic matter, becoming a “standing layer of very ignitable fuel.”
Then after a fire, these non-native plants tend to do better than native ones, thus increasing future fire risk. Fire “has generally been shown to decrease the abundance of native woody plants because nonnative, invasive, fire-adapted plants out-compete natives for resources in the post-fire environment and tend to dominate post-fire communities,” according to a United States Forest Service review.
These grass fires can also grow and move quickly, endangering residents and firefighters. “They see fire at a distance and the next thing they knew the building is on fire,” D’Antonio said.
The 2021 County of Maui report recommended “reduction of alien plant life that serves as fuel,” in order to prevent future wildfires, noting that “grasses serve as tinder and rapidly invade roadside shoulders.” Fire authorities should “implement an aggressive plan to replace these hazardous fuel sources with native plants to reduce combustible fuel while increasing water retention,” the report said.
If grasses provide the fuel for fire in Hawaii, then strong winds can help turn them into devastating wildfires, both by spreading fire and by sucking moisture into the storm and away from land.
“People really need to think about how they live in a flammable environment,” D’Antonio said. “They’re living with a legacy that’s going to be impossible to reverse.”
Read more about the Maui fires:
Your Biggest Questions About the Deadly Maui Fires, Answered
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Methane Risk Map combines satellite and geologic data to visualize chemical exposure from natural gas plumes.
Methane-sniffing satellites have brought unprecedented visibility to “super-emitter” events, when the planet-warming gas gushes into the atmosphere at alarming rates — often from leaky fossil fuel infrastructure.
But those plumes contain more than just methane. Scientists are now using satellite data to look beyond the climate risks and assess the danger of super-emitting wells, tanks, and other assets to nearby communities.
PSE Healthy Energy, an independent energy science and policy institute, unveiled a “Methane Risk Map” on Tuesday that illustrates the spread of health-harming pollutants like benzene and toluene that also emanate from methane super-emitter events.
“The Methane Risk Map translates methane as a climate problem into methane as an air quality and human health issue,” Seth Shonkoff, PSE’s executive director, said during a briefing last week.
The vast majority of what we call “natural gas” is methane, but when it comes out of the ground, it also contains a host of other compounds, including carcinogens. The exact mix varies by location, and also changes as it moves through the oil and gas supply chain.
The Methane Risk Map is a web tool with clickable markers representing individual methane super-emitter events throughout the U.S. Selecting one opens up a heatmap and information panel that shows the concentration of benzene, methane, and other pollutants present in that particular plume, the modeled distance each one traveled during the event, the demographics of the population exposed, and whether there were any sensitive facilities, such as schools or hospitals, in the exposure pathway. It also gives the date the emission event occurred and what kind of equipment it came from, if available, such as a well or a tank.
Courtesy of PSE Healthy Energy
Underlying the map are two relatively new scientific developments. The first, as mentioned earlier, is satellite data. PSE pulls data released by the nonprofit Carbon Mapper, which launched its premiere satellite a year ago. Carbon Mapper’s sensing tools, developed in collaboration with NASA, essentially point a telephoto lens at oil or gas facilities to detect methane super-emitter events and measure how much of the gas is streaming out.
The problem, however, is that the satellite can only detect methane.
To solve that problem, PSE researchers created a database of the composition of natural gas at more than 4,000 facilities, spanning 19 oil- and gas-producing basins. When oil and gas operators apply for air permits, they have to submit facility-specific gas composition data from laboratory reports, often derived from direct samples of the gas. Researchers from PSE Healthy Energy went through thousands of regulatory documents to compile a database based on these reports. They found hazardous pollutants in more than 99% of the samples.
To build the Methane Risk Map, PSE combined methane emission rates from Carbon Mapper with this site-specific gas composition data, then used an air dispersion model to estimate the peak concentrations of each pollutant in the surrounding area after the release and show the area at risk. The map includes risk benchmarks set by state regulators for each pollutant, and shows that hazardous air pollutant levels from these super-emitters often exceed them.
While methane itself isn’t toxic, it can pose a safety risk at high enough concentrations from explosions or fires. So in addition to information about traditional air pollutants, users can also view the extent to which the methane released by an event posed a threat to the surrounding area.
One of the shortcomings of the project, and of methane-mapping efforts in general, is that the data isn’t accessible in real time. Carbon Mapper takes roughly a month from when its satellite spots a super-emitter to process and release the emissions data publicly — then PSE will have to run its own models and update its map. The satellites also represent only a moment in time — they don’t tell you when a leak started or how long it lasted. While the time delay could improve with technological and other advances, fixing the latter would require a lot more satellites.
The Methane Risk Map can’t yet function as an emergency response tool in a public health context, but that also wasn’t quite the intent behind the project. The PSE researchers envision policymakers, regulators, lawyers, and communities using the tool to push for stronger regulations, such as safer setback distances, stricter air quality monitoring requirements, and leak detection and repair rules.
The Environmental Protection Agency finalized stronger rules regulating methane and air pollution from the oil and gas sector in 2023, under the Biden administration. But after Trump took over the federal apparatus, the agency said it was “reconsidering” those rules. Since then, the EPA has extended compliance deadlines for many of the rules.
“As regulatory rollbacks in the climate and air quality arenas occur in the coming months, having this type of defensible data on the risk of these events and the risks they pose to human health will become increasingly important,” Kelsey Bilsback, the principal investigator for the project, said during the briefing.
Right now the map only includes emissions from the “upstream” oil and gas sector, but PSE plans to expand the project to include leaks from the midstream and downstream, too, such as pipelines and end-users.
Analysts are betting that the stop work order won’t last. But the risks for the developer could be more serious.
The Danish offshore wind company Orsted was already in trouble. It was looking to raise about half of its market value in new cash because it couldn’t sell stakes in its existing projects. The market hated that idea, and the stock plunged almost 30% following the announcement of the offering. That was two weeks ago.
The stock has now plunged again by 16% to a record low on Monday. That follows the announcement late Friday night that the Department of the Interior had issued a stop work order for the company’s Revolution Wind project, off the coasts of Rhode Island and Connecticut. This would allow regulators “to address concerns related to the protection of national security interests of the United States,” the DOI’s letter said. The project is already 80% complete, according to the company, and was due to be finished and operating by next year.
While Donald Trump’s antipathy towards the wind industry — and especially the offshore wind industry — is no secret, analysts were not convinced the order would be a death blow to project, let alone Orsted. But it’s still quite bad news.
“This is another setback for Orsted, and the U.S. offshore wind industry,” Jefferies analyst Ahmed Farman wrote in a note to clients on Sunday. “The question now is whether a deal can be struck to restart the project like Empire Wind,” the New York offshore wind farm that received a similar stop work order in April, only to have it lifted in May.
Morningstar analyst Tancrede Fulop tacked in the same direction on Monday. “We expect the order to be lifted, as was the case for Equinor’s Empire Wind project off the coast of New York last May,” he wrote in a note to clients, adding an intriguing post-script: “The Empire Wind case suggests President Donald Trump’s administration uses stop-work orders to exert pressure on East Coast Democratic governors regarding specific issues.”
When the federal government lifted its stop work order on Empire Wind, Secretary of the Interior Doug Burgum wrote on X that he was “encouraged by Governor Hochul’s comments about her willingness to move forward on critical pipeline capacity,” likely referring to two formerly moribund pipeline proposals meant to carry shale gas from Pennsylvania into the Northeast. Hochul herself denied there was any quid pro quo between the project restarting and any pipeline developments. Meanwhile, the White House said days later that Hochul had “caved.”
The natural question becomes, then, what can the governors of Rhode Island and Connecticut offer Trump? At least so far, the states’ Democratic governors have criticized the administration for issuing the stop work order and said they will “pursue every avenue to reverse the decision to halt work on Revolution Wind.”
Yet they have no obvious card to play, Allen Brooks, a former Wall Street analyst and a senior fellow at the National Center for Energy Analytics, told me. “They were not blocking pipelines the way the state of New York was, so there’s not much they can do,” he said.
Even if Interior does reverse the order, the risk of a catastrophic outcome for Orsted has certainly gone up. The company’s rights issue, where existing shareholders have an option to expand their stakes at a discount, is intended to raise 60 billion Danish kroner, or around $9 billion, with some 5 billion kroner, or $800 million, due to complete Revolution. Jefferies has estimated that Revolution, which Orsted owns half of, will ultimately cost the company $4 billion.
The administration’s active hostility toward wind development “calls into question that business model,” Brooks told me. “There’s going to be a lot of questions as to whether [offshore wind developers] are going to be able to raise money.”
The Danish government, which is the majority shareholder of Orsted, said soon after the announcement that it would participate in the fundraising. The company reaffirmed that patronage on Monday, saying that it has the “continued support and commitment to the rights issue from its majority shareholder.”
Orsted’s big drop will also drag down the fortunes of its neighbor Norway, via the latter’s majority state-owned wind power company Equinor, which bought a 10% stake in Orsted late last year.
“Their investment decision looks terrible,” Brooks told me.
At the close of trading in Europe, Orsted’s market capitalization stood at around $12 billion. That’s about a third less than where it sat before the share sale announcement.
In a worst case scenario involving the cancellation of both Revolution and Sunrise Wind, another troubled offshore project planned to serve customers in Massachusetts, Fulop predicts that the long-run value of Orsted would go down enough that it would have to offer its new shares at a greater discount — which would, of course, raise less money.
The best case scenario may be that Orsted will join its Scandinavian peer in resolving a hostage negotiation with the White House, with billions of dollars of investment and over 1,000 jobs in the balance.
“The Empire Wind case suggests President Donald Trump’s administration uses stop-work orders to exert pressure on East Coast Democratic governors regarding specific issues,” Fulop wrote. Right now, it’s workers, investors, elected officials, and New England ratepayers feeling the pressure.
Using the Supercharger network with a non-Tesla is great — except for one big, awkward problem.
You can drive your life away and never notice the little arrow on the dashboard — the one next to the fuel canister icon that points out which side of the car the gas cap is on. The arrow is a fun piece of everyday design that has inspired many a know-it-all friend or TikTok. But while the intel it relays can be helpful if you’re driving a rental car, or are just generally forgetful, it doesn’t really matter in the grand scheme what side your fuel filler is on. Service stations are so big that there’s generally enough space to park at an open pump in whatever orientation a vehicle demands.
That’s not quite the case with electric cars.
When I test-drove the new Hyundai Ioniq 9 this summer, the industrial designers had included their own version of the little arrow to point out the location of the EV’s charging port. In the Ioniq 9’s case, it’s on the passenger’s side, the opposite of where you’d find the port on a Tesla. Turns out, that’s a problem. On our trip from L.A. to San Jose, Hyundai's navigation system directed me to a busy Tesla Supercharger just off the interstate in the parking lot of a Denny’s. But because of the big EV’s backward port placement, I needed two empty stalls next to each other — both of which I wound up blocking when I backed in to charge. The episode is an example of how we screwed over the present by not thinking hard enough when we built the infrastructure of the recent past.
Let’s back up. In the opening stage of the EV race, the charging question was split between Tesla and everybody else. The other electric carmakers adopted a few shared plug standards. But just like with gas cars, where the left-or-right placement of the gas cap seemed to vary arbitrarily vehicle to vehicle, there was no standardized placement of the charging port. Because all manner of different EVs pulled in, companies like Electrify America and Chargepoint built their chargers with cords long enough to reach either side of a car.
Tesla, meanwhile, built out its excellent but vertically integrated Supercharger network with only Tesla cars in mind. In most cases, a station amounted to eight or more parking spaces all in a row. The cable that came off each charging post was only long enough to reach the driver’s side rear, where all the standardized ports on Teslas can be found. The thinking made sense at the time. Other EVs weren’t allowed to use the Supercharger network. Why, then, would you pay for extra cabling to reach the other side of the vehicle?
It became a big issue late in 2022. At that point, Musk made Tesla’s proprietary plug an open-source standard and encouraged the other carmakers to adopt it. One by one they fell in line. The other car companies pledged to use the newly renamed North American Charging Standard, or NACS, in their future EVs. Then Tesla began to open many, but not all, of its stations to Rivians, Hyundais, and other electric cars.
Which leads us to today. The Ioniq 9, which began deliveries this summer, comes with a NACS port. This allows drivers to use Tesla stations without the need to keep an annoying dongle handy. But because Hyundai put the port on the opposite side, the car is oriented in the opposite direction from the way hundreds or thousands of Supercharger stations are set up. Suppose you find an empty spot between two Teslas and back in — the plug that could reach your passenger’s side port actually belongs to the stall next to you, and is in use by the EV parked there. The available cord, the one meant for the stall you actually parked in, can’t reach over to the passenger’s side.
The result is a mess. Find two open stalls next to each other and you can make it work, though it means you’re taking up both of them (stealing the cord meant for the neighboring stall and blocking the cord meant for the one you’re parked in). At giant stations with dozens of plugs, this is no big deal. At smaller ones with just 12 or 16 plugs, it’s a nuisance. I’ve walked out and moved the Rivian I was test-driving before I had all the electricity I wanted because I felt guilty about blocking two stalls. To avoid this breach of etiquette you might need to park illegally, leaving your EV in a non-spot or in a place where it’s blocking the sidewalk just so it can reach the plug. (Says Tesla FAQ: “In some cases you might have to park over the line in order to charge comfortably. Avoid parking diagonally to reach the cable and try to obstruct as few charge posts as possible.)
Some relief from this short-sightnedness is coming. Tesla’s new “V4” stations that are currently opening around the world are built with this complexity in mind and include longer cables and an orientation meant to reach either side of the vehicle. The buildout of EV chargers of all kinds is slated to continue even with the Trump administration’s opposition to funding them, and new stations should be flexible to any kind of electric car. And the idea of making sure EVs of any size and shape can charge is picking up steam. For example, many of the stations in Rivian’s Adventure Network include at least one stall where the charging post is off to the side of an extra-long parking space so that an EV towing a trailer can reach its charging port.
Yet for now, we’re stuck with what we’ve already built. There are more than 2,500 Tesla Supercharger stations in the U.S., representing more than 30,000 individual plugs, and most of those were built with the V2 and V3 versions of Tesla’s technology that have this orientation problem. For years to come, many of those stations will be the best or only option for non-Tesla EVs on a road trip, which means we’re all in for some extra inconvenience.