You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A podcast by GBH News reporter Ian Coss gives this notorious project a long-overdue reappraisal. Bonus: The show comes with lessons for climate infrastructure projects of the future.

If you’ve lived in Massachusetts at any point in the last 50 years, you’ve heard of the Big Dig. It’s infamous — a tunnel project that was supposed to bury an elevated highway in Boston to the tune of $2 billion that eventually ballooned in cost to $15 billion and took a quarter of a century to finish.
The Big Dig was more than just a highway project, though. It was a monumental effort that Ian Coss, a reporter at GBH News, calls a “renovation of downtown Boston.” The project built tunnels and bridges, yes, but it also created parks, public spaces, and mass transit options that transformed the city. In a nine-episode podcast series appropriately called The Big Dig, Coss dives into the long, complicated history of the project, making a case for why the Big Dig was so much more than the boondoggle people think it was.
I talked to Coss about how the Big Dig came to be and the lessons we can learn from it as we continue to adapt our built environment to a changing climate. Our interview has been edited for length and clarity.
I moved to Boston for college in 2010, and I remember going to the North End and being struck by how beautiful it was. I didn’t realize how recently that view had changed until I listened to your podcast — I mean, the Big Dig had only wrapped up a few years earlier.
It’s easy to forget how quickly it transformed. I grew up in Massachusetts, so when I would come into the city I would see [the Big Dig] being built — I have vague memories of the elevated artery. And when I moved to Boston Proper in 2013, which was less than a decade after the project wrapped, it was stunning for me to be like, “oh, this is what that project was,” because I definitely didn’t understand it at the time.
What made you decide to create an entire podcast about this “renovation” of Boston?
I think part of it was this disconnect where I grew up hearing about the Big Dig and mostly hearing bad things about it — it was behind schedule, it was a disaster, a boondoggle, etc. — because that really was the reputation of the project, nationally and locally. And then moving to the city and seeing the fruits of it, it was hard to reconcile those things. Like, this “disaster” created a greenway through the middle of the city. Now you can actually get to the airport.
What was driving that narrative of its being a disaster?
The Big Dig went on a very long emotional journey. It started as this kind of visionary, idealistic project championed by activists and supported by politicians of both parties. And then, after navigating the process of funding, permitting, contracting, managing, and designing, by the time it's in construction, it really is not a source of pride.
There are a number of technical things about the Big Dig that could have been done better, and we can learn lessons from it. The way it was contracted could have been done better. The management structure could have been done better. There were flaws in the design, including a fatal flaw that cost the life of a driver in the tunnel.
I think a lot of it is about the storytelling. Just to give one example, so much of the negative narrative around the Big Dig was around the cost. You often hear about how it started with an estimated cost of $2 billion and wound up costing $15 billion. But I think that narrative misses a few things.
One is that it was never going to cost $2 billion. That was not a realistic estimate. But in our country, it is so hard to get approval, political support, funding, and permitting in place that there is a very strong incentive all throughout the process to downplay the costs, downplay the risks, downplay the disruption, make it sound like this is going to be quick and easy and painless and cheap, just to get to the starting line. Because the paradox of it is that if we had known in 1983 or 1987 or 1991 that this was going to be a $15 billion project, it would have never happened. And yet, in hindsight, there are many smart people who told me that this project was a bargain at $15 billion because of what we got in terms of economic benefits, transportation improvements, and environmental improvements.
There’s almost an element of asking for forgiveness rather than permission here, but that forgiveness is inevitably laced with anger because of those expectations.
Right. If only it were just forgiveness.
The Big Dig had its roots in the National Highway Program. Were all those projects going constantly over budget?
There’s a great paper that I cite in episode four where the authors studied the cost of highway building per mile every year from the 1970s through the 1990s, and it’s actually a great sample set because we’ve built so many highways of different sizes in different states. Basically, what they found is that highway costs per mile really ramp up significantly in the 1970s. And that’s, of course, the period when the [Big Dig] was first getting conceived.
So the short answer to your question is, it was cheaper once. But there were other costs, in that those early highways in the ‘50s and ‘60s largely did not consider the impact on communities or on the environment. They did not make a lot of mitigation efforts to minimize the day to day disruption caused by those projects. So I think part of what the Big Dig captures is this really historic change in the way we build things in this country that was ushered in by the anti-highway movements, by citizen activism, and by the National Environmental Policy Act. Over the course of the 1970s we made it much harder to build things, for very good reasons.
I think the Big Dig — which some people describe as the last great project of the interstate era — captures an attempt to do a massive, ambitious infrastructure project that is also loaded with environmental mitigation and also has a robust community process. Part of what we learned through that is that you can have a project that’s cheap and efficient, you can have a project that’s democratic and humane, but it’s tough to have it all. And the Big Dig was trying to have it all, and we did get it all, but at enormous cost. That was the thing that could never be solved.
You make a connection between the Big Dig and climate change right from the first episode. What are the climate lessons we can learn from the Big Dig?
In some ways, it’s ironic to hold up the Big Dig as a case study for climate change because it’s a highway project. My point is not that the Big Dig is, like, the future of infrastructure. But what it offers is a recent case study on a massively ambitious building project. We have some distance, and you can see the whole arc of it, but it very much lives within our era. It’s not the Hoover Dam or the Golden Gate Bridge or any of those other big projects built in a different time under different conditions.
The way I see it is that in order to mitigate or prevent the worst effects of climate change — and you can feel free to disagree with me — we’re going to need to build a lot of stuff. This is not a problem that we’re going to solve by riding bicycles and growing vegetables in the backyard, both of which I do and hope everyone does. And of course, those projects might look different than the Big Dig because building a wind turbine isn’t exactly analogous to building a downtown tunnel. But I think there are relevant analogies, especially things like coastal mitigation in cities, improving mass transit, building high energy transmission lines — these large scale projects that will affect people but also are an important public good.
You talked on the show about the Big Dig as an attempt to make this process more democratic at some level. People on both sides had very strong feelings about it. This reminded me of the NIMBY/YIMBY dichotomy of climate projects. Did anyone mention any best practices that could be applied to future projects of this kind?
I’ve talked with Fred Salvucci [former Massachusetts Secretary of Transportation and driving force of the Big Dig] about this. He mentioned this biblical parable — he’s full of parables — about Jesus walking across the water and then turning to his disciples and telling them to follow. But they step into the water and fall right in, and when they get back out they say it’s impossible. And then Jesus says, “It’s easy to walk across the water. You just have to know where the stones are.”
And Fred said the lesson there is that, in order to navigate this kind of process, you have to know where the flashpoints are, what the issues will be. That way you can anticipate them rather than just going in and saying “this is my project, I’m going to do it this way and you can fight me on it.”
Part of what I think is really interesting about this, which I think speaks to present-day projects like offshore wind, is that in that fight, you have very well-intentioned actors who are trying to make the project better and using the environmental process to do that. And you also have bad actors who are weaponizing and manipulating the environmental process to their own personal ends. And those two things get all mixed up.
You know, I’m an environmentalist. I believe in environmental review. I don’t want to sit here and say that we need to get rid of all environmental permitting because it makes it too hard to build things. But I think it’s also important to recognize that these things can be weaponized.
Scheme Z, which proposed this big spiral loop of ramps and a bridge over the river, is a good example. Politically, that became very messy — they were trying to impose concentrated harm in the name of a public good. And I know, strategically, maybe there are things [Salvucci] could have done to mitigate that or circumvent that, but given the structures in place, the logical outcome is that it spends a decade in lawsuits and review committees and you wind up with something that’s okay, that everyone can live with.
The funny thing about that is that it turned into the Zakim Bridge, which is now a Boston icon.
Right. I mean, that’s part of the communication piece, too.
I was biking under the Zakim bridge the other day, and I biked through where there’s a nice pedestrian and bicycle bridge and this skate park that is always filled with people. Truly, that is maybe the best utilized public space created by the Big Dig.
It’s easy for me to play Monday morning quarterback and say “oh, you should have communicated that better, you should have told the story better.” I mean, he was saying all the right things. But then all you had to say on the other side was “it’s 18 lanes and five ramps,” and that sounded terrible and looked terrible on the page. And I mean, sure, I wish there weren’t all those ramps there, but like you said, ironically, the bridge became an icon of the city.
I think a big part of the lesson for me is how hard it is to build infrastructure democratically because the timescales are all wrong. These things have short-term costs and cause short-term disruption and bring very long-term benefits.
I was constantly struck by this issue of scale, both in terms of time and money. It’s hard to wrap your head around the idea of billions of dollars and projects that span decades. These are just things that are impossible for any regular person to really plan out.
I was talking to someone who said that their dad was in his 70s when the Big Dig was just getting started. And for him, it was like, “my city’s going to be torn up for the rest of my life,” right? That’s what this project meant for him — he would live with this mess of a project and never see the results. And he had to deal with that so that you could move to Boston in 2010 and never know the city another way. The cost of that benefit is borne by another generation.
And it’s the same thing with climate change. It moves on a scale that is so much longer than politics. The Big Dig took almost 40 years from conception to completion. So if you’re thinking about political capital, if you’re thinking about two- and four-year election cycles, it’s very, very hard to conceive, plan, and deliver a project on that kind of time scale.
The benefits and costs are almost inverted in climate change, in a way. We’re talking about future benefits, yes, but we’re also talking about future costs if we don’t do anything. But it’s so hard to make people think in a 40- or 50-year timescale.
If the Big Dig was so hard to make happen politically with what I think was a more genial political environment overall, it feels kind of impossible to think of building anything on that scale right now.
I gave a talk at City Hall a few weeks ago and I was talking with some of the young planners there, people who are in their 30s. Some of them have been listening to the series, and they told me they could not imagine what it would be like to get that kind of federal funding out of Washington, get all the local players on board, get it through the permitting process, and get it contracted. Because right now if they try to take away one parking spot and put in one bike line, they’re bogged down in meetings for a year.
I think climate change is also the inverse of projects like this because with the Big Dig, for example, you can feel the tangible benefits of a quicker commute and a more beautiful city. But with climate change, if the projects work, you’d actually feel nothing.
Exactly. Climate change is way, way harder. A road project or a rail project will have benefits. You get ribbon cuttings and photo ops. But if we make Boston resilient to flooding or something, you know, do some big project that would improve the shoreline or whatever ideally, that historic storm surge may never come, or it’ll come and we’ll be prepared for it and nothing will happen. But yeah, you’re working with long term counterfactuals.
It feels to me like climate change was designed in a laboratory to flummox institutions. It takes all of our cognitive biases, our ingrained social and biological blind spots and weak points and just flicks them all at us at once.
All nine episodes of The Big Dig are out now. You can listen on the WGBH website, Apple Podcasts, Spotify, or wherever you get your podcasts.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob talks with McMaster University engineering professor Greig Mordue, then checks in with Heatmap contributor Andrew Moseman on the EVs to watch out for.
It’s been a huge few weeks for the electric vehicle industry — at least in North America.
After a major trade deal, Canada is set to import tens of thousands of new electric vehicles from China every year, and it could soon invite a Chinese automaker to build a domestic factory. General Motors has also already killed the Chevrolet Bolt, one of the most anticipated EV releases of 2026.
How big a deal is the China-Canada EV trade deal, really? Will we see BYD and Xiaomi cars in Toronto and Vancouver (and Detroit and Seattle) any time soon — or is the trade deal better for Western brands like Volkswagen or Tesla which have Chinese factories but a Canadian presence? On this week’s Shift Key, Rob talks to Greig Mordue, a former Toyota executive who is now an engineering professor at McMaster University in Hamilton, Ontario, about how the deal could shake out. Then he chats with Heatmap contributor Andrew Moseman about why the Bolt died — and the most exciting EVs we could see in 2026 anyway.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Over the weekend there was a new tariff threat from President Trump — he seems to like to do this on Saturday when there are no futures markets open — a new tariff threat on Canada. It is kind of interesting because he initially said that he thought if Canada could make a deal with China, they should, and he thought that was good. Then over the weekend, he said that it was actually bad that Canada had made some free trade, quote-unquote, deal with China.
Do you think that these tariff threats will affect any Carney actions going forward? Is this already priced in, slash is this exactly why Carney has reached out to China in the first place?
Greig Mordue: I think it all comes under the headline of “deep sigh,” and we’ll see where this goes. But for the first 12 months of the U.S. administration, and the threat of tariffs, and the pullback, and the new threat, and this going forward, the public policy or industrial policy response from the government of Canada and the province of Ontario, where automobiles are built in this country, was to tread lightly. And tread lightly, generally means do nothing, and by doing nothing stop the challenges.
And so doing nothing led to Stellantis shutting down an assembly plant in Brampton, Ontario; General Motors shutting an assembly plant in Ingersoll, Ontario; General Motors reducing a three-shift operation in Oshawa, Ontario to two shifts; and Ford ragging the puck — Canadian term — on the launch of a new product in their Oakville, Ontario plant. So doing nothing didn’t really help Canada from a public policy perspective.
So they’re moving forward on two fronts: One is the resetting of relationships with China and the hope of some production from Chinese manufacturers. And two, the promise of automotive industrial policy in February, or at some point this spring. So we’ll see where that goes — and that may cause some more restless nights from the U.S. administration. We’ll see.
Mentioned:
Canada’s new "strategic partnership” with China
The Chevy Bolt Is Already Dead. Again.
The EVs Everyone Will Be Talking About in 2026
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
A federal judge in Massachusetts ruled that construction on Vineyard Wind could proceed.
The Vineyard Wind offshore wind project can continue construction while the company’s lawsuit challenging the Trump administration’s stop work order proceeds, judge Brian E. Murphy for the District of Massachusetts ruled on Tuesday.
That makes four offshore wind farms that have now won preliminary injunctions against Trump’s freeze on the industry. Dominion Energy’s Coastal Virginia offshore wind project, Orsted’s Revolution Wind off the coast of New England, and Equinor’s Empire Wind near Long Island, New York, have all been allowed to proceed with construction while their individual legal challenges to the stop work order play out.
The Department of the Interior attempted to pause all offshore wind construction in December, citing unspecified “national security risks identified by the Department of War.” The risks are apparently detailed in a classified report, and have been shared neither with the public nor with the offshore wind companies.
Vineyard Wind, a joint development between Avangrid Renewables and Copenhagen Infrastructure Partners, has been under construction since 2021, and is already 95% built. More than that, it’s sending power to Massachusetts customers, and will produce enough electricity to power up to 400,000 homes once it’s complete.
In court filings, the developer argued it was urgent the stop work order be lifted, as it would lose access to a key construction boat required to complete the project on March 31. The company is in the process of replacing defective blades on its last handful of turbines — a defect that was discovered after one of the blades broke in 2024, scattering shards of fiberglass into the ocean. Leaving those turbine towers standing without being able to install new blades created a safety hazard, the company said.
“If construction is not completed by that date, the partially completed wind turbines will be left in an unsafe condition and Vineyard Wind will incur a series of financial consequences that it likely could not survive,” the company wrote. The Trump administration submitted a reply denying there was any risk.
The only remaining wind farm still affected by the December pause on construction is Sunrise Wind, a 924-megawatt project being developed by Orsted and set to deliver power to New York State. A hearing for an injunction on that order is scheduled for February 2.
Noon Energy just completed a successful demonstration of its reversible solid-oxide fuel cell.
Whatever you think of as the most important topic in energy right now — whether it’s electricity affordability, grid resilience, or deep decarbonization — long-duration energy storage will be essential to achieving it. While standard lithium-ion batteries are great for smoothing out the ups and downs of wind and solar generation over shorter periods, we’ll need systems that can store energy for days or even weeks to bridge prolonged shifts and fluctuations in weather patterns.
That’s why Form Energy made such a big splash. In 2021, the startup announced its plans to commercialize a 100-plus-hour iron-air battery that charges and discharges by converting iron into rust and back again. The company’s CEO, Mateo Jaramillo, told The Wall Street Journal at the time that this was the “kind of battery you need to fully retire thermal assets like coal and natural gas power plants.” Form went on to raise a $240 million Series D that same year, and is now deploying its very first commercial batteries in Minnesota.
But it’s not the only player in the rarified space of ultra-long-duration energy storage. While so far competitor Noon Energy has gotten less attention and less funding, it was also raising money four years ago — a more humble $3 million seed round, followed by a $28 million Series A in early 2023. Like Form, it’s targeting a price of $20 per kilowatt-hour for its electricity, often considered the threshold at which this type of storage becomes economically viable and materially valuable for the grid.
Last week, Noon announced that it had completed a successful demonstration of its 100-plus-hour carbon-oxygen battery, partially funded with a grant from the California Energy Commission, which charges by breaking down CO2 and discharges by recombining it using a technology known as a reversible solid-oxide fuel cell. The system has three main components: a power block that contains the fuel cell stack, a charge tank, and a discharge tank. During charging, clean electricity flows through the power block, converting carbon dioxide from the discharge tank into solid carbon that gets stored in the charge tank. During discharge, the system recombines stored carbon with oxygen from the air to generate electricity and reform carbon dioxide.
Importantly, Noon’s system is designed to scale up cost-effectively. That’s baked into its architecture, which separates the energy storage tanks from the power generating unit. That makes it simple to increase the total amount of electricity stored independent of the power output, i.e. the rate at which that energy is delivered.
Most other batteries, including lithium-ion and Form’s iron-air system, store energy inside the battery cells themselves. Those same cells also deliver power; thus, increasing the energy capacity of the system requires adding more battery cells, which increases power whether it’s needed or not. Because lithium-ion cells are costly, this makes scaling these systems for multi-day energy storage completely uneconomical.
In concept, Noon’s ability to independently scale energy capacity is “similar to pumped hydro storage or a flow battery,” Chris Graves, the startup’s CEO, told me. “But in our case, many times higher energy density than those — 50 times higher than a flow battery, even more so than pumped hydro.” It’s also significantly more energy dense than Form’s battery, he said, likely making it cheaper to ship and install (although the dirt cheap cost of Form’s materials could offset this advantage.)
Noon’s system would be the first grid-scale deployment of reversible solid-oxide fuel cells specifically for long-duration energy storage. While the technology is well understood, historically reversible fuel cells have struggled to operate consistently and reliably, suffering from low round trip efficiency — meaning that much of the energy used to charge the battery is lost before it’s used — and high overall costs. Graves conceded Noon has implemented a “really unique twist” on this tech that’s allowed it to overcome these barriers and move toward commercialization, but that was as much as he would reveal.
Last week’s demonstration, however, is a big step toward validating this approach. “They’re one of the first ones to get to this stage,” Alexander Hogeveen Rutter, a manager at the climate tech accelerator Third Derivative, told me. “There’s certainly many other companies that are working on a variance of this,” he said, referring to reversible fuel cell systems overall. But none have done this much to show that the technology can be viable for long-duration storage.
One of Noon’s initial target markets is — surprise, surprise — data centers, where Graves said its system will complement lithium-ion batteries. “Lithium ion is very good for peak hours and fast response times, and our system is complementary in that it handles the bulk of the energy capacity,” Graves explained, saying that Noon could provide up to 98% of a system’s total energy storage needs, with lithium-ion delivering shorter streams of high power.
Graves expects that initial commercial deployments — projected to come online as soon as next year — will be behind-the-meter, meaning data centers or other large loads will draw power directly from Noon’s batteries rather than the grid. That stands in contrast to Form’s approach, which is building projects in tandem with utilities such as Great River Energy in Minnesota and PG&E in California.
Hogeveen Rutter, of Third Derivative, called Noon’s strategy “super logical” given the lengthy grid interconnection queue as well as the recent order from the Federal Energy Regulatory Commission intended to make it easier for data centers to co-locate with power plants. Essentially, he told me, FERC demanded a loosening of the reins. “If you’re a data center or any large load, you can go build whatever you want, and if you just don’t connect to the grid, that’s fine,” Hogeveen Rutter said. “Just don’t bother us, and we won’t bother you.”
Building behind-the-meter also solves a key challenge for ultra-long-duration storage — the fact that in most regions, renewables comprise too small a share of the grid to make long-duration energy storage critical for the system’s resilience. Because fossil fuels still meet the majority of the U.S.’s electricity needs, grids can typically handle a few days without sun or wind. In a world where renewables play a larger role, long-duration storage would be critical to bridging those gaps — we’re just not there yet. But when a battery is paired with an off-grid wind or solar plant, that effectively creates a microgrid with 100% renewables penetration, providing a raison d’être for the long-duration storage system.
“Utility costs are going up often because of transmission and distribution costs — mainly distribution — and there’s a crossover point where it becomes cheaper to just tell the utility to go pound sand and build your power plant,” Richard Swanson, the founder of SunPower and an independent board observer at Noon, told me. Data centers in some geographies might have already reached that juncture. “So I think you’re simply going to see it slowly become cost effective to self generate bigger and bigger sizes in more and more applications and in more and more locations over time.”
As renewables penetration on the grid rises and long-duration storage becomes an increasing necessity, Swanson expects we’ll see more batteries like Noon’s getting grid connected, where they’ll help to increase the grid’s capacity factor without the need to build more poles and wires. “We’re really talking about something that’s going to happen over the next century,” he told me.
Noon’s initial demo has been operational for months, cycling for thousands of hours and achieving discharge durations of over 200 hours. The company is now fundraising for its Series B round, while a larger demo, already built and backed by another California Energy Commission grant, is set to come online soon.
While Graves would not reveal the size of the pilot that’s wrapping up now, this subsequent demo is set to deliver up to 100 kilowatts of power at once while storing 10 megawatt-hours of energy, enough to operate at full power for 100 hours. Noon’s full-scale commercial system is designed to deliver the same 100-hour discharge duration while increasing the power output to 300 kilowatts and the energy storage capacity to 30 megawatt-hours.
This standard commercial-scale unit will be shipping container-sized, making it simple to add capacity by deploying additional modules. Noon says it already has a large customer pipeline, though these agreements have yet to be announced. Those deals should come to light soon though, as Swanson says this technology represents the “missing link” for achieving full decarbonization of the electricity sector.
Or as Hogeveen Rutter put it, “When people talk about, I’m gonna get rid of all my fossil fuels by 2030 or 2035 — like the United Kingdom and California — well this is what you need to do that.”