You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Life cycle analysis has some problems.
About six months ago, a climate scientist from Arizona State University, Stephanie Arcusa, emailed me a provocative new paper she had published that warned against our growing reliance on life cycle analysis. This practice of measuring all of the emissions related to a given product or service throughout every phase of its life — from the time raw materials are extracted to eventual disposal — was going to hinder our ability to achieve net-zero emissions, she wrote. It was a busy time, and I let the message drift to the bottom of my inbox. But I couldn’t stop thinking about it.
Life cycle analysis permeates the climate economy. Businesses rely on it to understand their emissions so they can work toward reducing them. The Securities and Exchange Commission’s climate risk disclosure rule, which requires companies to report their emissions to investors, hinges on it. The clean hydrogen tax credit requires hydrogen producers to do a version of life cycle analysis to prove their eligibility. It is central to carbon markets, and carbon removal companies are now developing standards based on life cycle analysis to “certify” their services as carbon offset developers did before them.
At the same time, many of the fiercest debates in climate change are really debates about life cycle analysis. Should companies be held responsible for the emissions that are indirectly related to their businesses, and if so then which ones? Are carbon offsets a sham? Does using corn ethanol as a gasoline substitute reduce emissions or increase them? Scientists have repeatedly reached opposite conclusions on that one depending on how they accounted for the land required to grow corn and what it might have been used for had ethanol not been an option. Though the debate plays out in calculations, it’s really a philosophical brawl.
Everybody, for the most part, knows that life cycle analysis is difficult and thorny and imprecise. But over and over, experts and critics alike assert that it can be improved. Arcusa disagrees. Life cycle analysis, she says, is fundamentally broken. “It’s a problematic and uncomfortable conclusion to arrive at,” Arcusa wrote in her email. “On the one hand, it has been the only tool we have had to make any progress on climate. On the other, carbon accounting is captured by academia and vested interests and will jeopardize global climate goals.”
When I recently revisited the paper, I learned that Arcusa and her co-authors didn’t just critique life cycle analysis, they proposed a bold alternative. Their idea is not economically or politically easy, but it also doesn’t suffer from the problems of trying to track carbon throughout the supply chain. I recently called her up to talk through it. Our conversation has been edited for clarity.
Can you walk me through what the biggest issues with life cycle analysis are?
So, life cycle analysis is a qualitative tool —
It seems kind of counterintuitive or even controversial to call it a qualitative tool because it’s specifically trying to quantify something.
I think the best analogy for LCA is that it’s a back-of-the-envelope tool. If you really could measure everything, then sure, LCA is this wonderful idea. The problem is in the practicality of being able to collect all of that data. We can’t, and that leads us to use emissions factors and average numbers, and we model this and we model that, and we get so far away from reality that we actually can’t tell if something is positive or negative in the end.
The other problem is that it’s almost entirely subjective, which makes one LCA incomparable to another LCA depending on the context, depending on the technology. And yes, there are some standardization efforts that have been going on for decades. But if you have a ruler, no matter how much you try, it’s not going to become a screwdriver. We’re trying to use this tool to quantify things and make them the same for comparison, and we can’t because of that subjectivity.
In this space where there is a lot of money to be made, it’s very easy to manipulate things one way or another to make it look a little bit better because the method is not robust. That’s really the gist of the problems here.
One of the things you talk about in the paper is the way life cycle analysis is subject to different worldviews. Can you explain that?
It’s mostly seen in what to include or exclude in the LCA — it can have enormous impacts on the results. I think corn ethanol is the perfect example of how tedious this can be because we still don’t have an answer, precisely for that reason. The uncertainty range of the results has shrunk and gotten bigger and shrunk and gotten bigger, and it’s like, well, we still don’t know. And now, this exact same worldview debate is playing into what should be included and not included in certification for things [like carbon removal] that are going to be sold under the guise of climate action, and that just can’t be. We’ll be forever debating whether something is true.
Is this one of those things that scientists have been debating for ever, or is this argument that we should stop using life cycle analysis more of a fringe idea?
I guess I would call it a fringe idea today. There’s been plenty of criticism throughout the years, even from the very beginning when it was first created. What I have seen is that there is criticism, and then there is, “But here’s how we can solve it and continue using LCA!” I’ve only come across one other publication that specifically said, “This is not working. This is not the right tool,” and that’s from Michael Gillenwater. He’s at the Greenhouse Gas Management Institute. He was like, “What are we doing?” There might be other folks, I just haven’t come across them.
Okay, so what is the alternative to LCA that you’ve proposed in this paper?
LCA targets the middle of the supply chain, and tries to attribute responsibility there. But if you think about where on the supply chain the carbon is the most well-known, it is actually at the source, at the point of origin, before it becomes an emission. At the point where it is created out of the ground is where we know how much carbon there is. If we focus on that source through a policy that requires mandatory sequestration — for every ton of carbon that is now produced, there is a ton of carbon that’s been put away through carbon removal, and the accounting happens there, before it is sold to anybody —anybody who’s now downstream of that supply chain is already carbon neutral. There is no need to track carbon all the way down to the consumer.
We know this is accurate because that is where governments already collect royalties and taxes — they want to know exactly how much is being sold. So we already do this. The big difference is that the policy would be required there instead of taxing everybody downstream.
You’re saying that fossil fuel producers should be required to remove a ton of carbon from the atmosphere for every ton of carbon in the fuels they sell?
Yeah, and maybe I should be more specific. They should pay for an equal amount of carbon to be removed from the atmosphere. In no way are we implying that a fossil carbon producer needs to also be doing the sequestration themselves.
What would be the biggest challenges of implementing something like this?
The ultimate challenge is convincing people that we need to be managing carbon and that this is a waste management type of system. Nobody really wants to pay for waste management, and so it needs to be regulated and demanded by some authority.
What about the fact that we don’t really have the ability to remove carbon or store carbon at scale today, and may not for some time?
Yes, we need to build capacity so that eventually we can match the carbon production to the carbon removal, which is why we also proposed that the liability needs to start today, not in the future. That liability is as good as a credit card debt — you actually have to pay it. It can be paid little by little every year, but the liability is here now, and not in the future.
The risk in the system that I’m describing, or even the system that is currently being deployed, is that you have counterproductive technologies that are being developed. And by counterproductive, I mean [carbon removal] technologies that are producing more emissions than they are storing, and so they’re net-positive. You can create a technology that has no intention of removing more carbon than its sequesters. The intention is just to earn money.
Do you mean, like, the things that are supposed to be removing carbon from the atmosphere and sequestering it, they are using fossil fuels to do that, and end up releasing more carbon in the process?
Yeah, so basically, what we show in the paper is that when we get to full carbon neutrality, the market forces alone will eliminate those kinds of technologies that are counterproductive. The problem is during the transition, these technologies can be economically viable because they are cheaper than they would be if 100% of the fossil fuel they used was carbon neutral through carbon removal. And so in order to prevent those technologies from gaming the system, we need a way to artificially make the price of fossil carbon as expensive as it would be if 100% of that fossil carbon was covered by carbon removal.
That’s where the idea of permits comes in. For every amount that I produce, I now have an instant liability, which is a permit. Each of those permits has to be matched by carbon removal. And since we don’t have enough carbon removal, we have futures and these futures represent the promise of actually doing carbon removal.
What if we burn through the remaining carbon budget and we still don’t have the capacity to sequester enough carbon?
Well, then we’re going into very unchartered territory. Right now we’re just mindlessly going through this thinking that if we just reduce emissions it will be good. It won’t be good.
In the paper, you also argue against mitigating greenhouse gases other than carbon, and that seems pretty controversial to me. Why is that?
We’re not arguing against mitigating, per se. We’re arguing against lumping everything under the same carbon accounting framework because lumping hides the difficulty in actually doing something about it. It’s not that we shouldn’t mitigate other greenhouse gases — we must. It’s just that if we separate the problem of carbon away from the problem of methane, away from the problem of nitrous oxide, or CFCs, we can tackle them more effectively. Because right now, we’re trying to do everything under the same umbrella, and that doesn’t work. We don’t tackle drinking and driving by sponsoring better tires. That’s just silly, right? We wouldn’t do that. We would tackle drinking and driving on its own, and then we would tackle better tires in a different policy.
So the argument is: Most of climate change is caused by carbon; let’s tackle that separately from the others and leave tackling methane and nitrous oxide to purposefully created programs to tackle those things. Let’s not lump the calculations altogether, hiding all the differences and hiding meaningful action.
Is there still a role for life cycle analysis?
You don’t want to be regulating carbon using life cycle analysis. So you can use the life cycle analysis for qualitative purposes, but we’re pretending that it is a tool that can deliver accurate results, and it just doesn’t.
What has the response been like to this paper? What kind of feedback have you gotten?
Stunned silence!
Nobody has said anything?
In private, they have. Not in public. In private, it’s been a little bit like, “I’ve always thought this, but it seemed like there was no other way.” But then in public, think about it. Everything is built on LCA. It’s now in every single climate bill out there. Every single standard. Every single consulting company is doing LCA and doing carbon footprinting for companies. It’s a huge industry, so I guess I shouldn’t have been surprised to hear nothing publicly.
Yeah, I was gonna ask — I’ve been writing about the SEC rules and this idea that companies should start reporting their emissions to their investors, and that would all be based on LCA. There’s a lot of buy-in for that idea across the climate movement.
Yeah, but there’s definitely a fine line with make-believe. I think in many instances, we kid ourselves thinking that we’re going to have numbers that we can hang our hats on. In many instances we will not, and they will be challenged. And so at that point, what’s the point?
One thing I hear when I talk to people about this is, well, having an estimate is better than not having anything, or, don’t let the perfect be the enemy of the good, or, we can just keep working to make them better and better. Why not?
I mean, I wouldn’t say don’t try. But when it comes to actually enforcing anything, it’s going to be extremely hard to prove a number. You could just be stuck in litigation for a long time and still not have an answer.
I don’t know, to me it just seems like an endless debate while time is ticking and we will just feel good because we’ll have thought we measured everything. But we’re still not doing anything.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.