You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Life cycle analysis has some problems.
About six months ago, a climate scientist from Arizona State University, Stephanie Arcusa, emailed me a provocative new paper she had published that warned against our growing reliance on life cycle analysis. This practice of measuring all of the emissions related to a given product or service throughout every phase of its life — from the time raw materials are extracted to eventual disposal — was going to hinder our ability to achieve net-zero emissions, she wrote. It was a busy time, and I let the message drift to the bottom of my inbox. But I couldn’t stop thinking about it.
Life cycle analysis permeates the climate economy. Businesses rely on it to understand their emissions so they can work toward reducing them. The Securities and Exchange Commission’s climate risk disclosure rule, which requires companies to report their emissions to investors, hinges on it. The clean hydrogen tax credit requires hydrogen producers to do a version of life cycle analysis to prove their eligibility. It is central to carbon markets, and carbon removal companies are now developing standards based on life cycle analysis to “certify” their services as carbon offset developers did before them.
At the same time, many of the fiercest debates in climate change are really debates about life cycle analysis. Should companies be held responsible for the emissions that are indirectly related to their businesses, and if so then which ones? Are carbon offsets a sham? Does using corn ethanol as a gasoline substitute reduce emissions or increase them? Scientists have repeatedly reached opposite conclusions on that one depending on how they accounted for the land required to grow corn and what it might have been used for had ethanol not been an option. Though the debate plays out in calculations, it’s really a philosophical brawl.
Everybody, for the most part, knows that life cycle analysis is difficult and thorny and imprecise. But over and over, experts and critics alike assert that it can be improved. Arcusa disagrees. Life cycle analysis, she says, is fundamentally broken. “It’s a problematic and uncomfortable conclusion to arrive at,” Arcusa wrote in her email. “On the one hand, it has been the only tool we have had to make any progress on climate. On the other, carbon accounting is captured by academia and vested interests and will jeopardize global climate goals.”
When I recently revisited the paper, I learned that Arcusa and her co-authors didn’t just critique life cycle analysis, they proposed a bold alternative. Their idea is not economically or politically easy, but it also doesn’t suffer from the problems of trying to track carbon throughout the supply chain. I recently called her up to talk through it. Our conversation has been edited for clarity.
Can you walk me through what the biggest issues with life cycle analysis are?
So, life cycle analysis is a qualitative tool —
It seems kind of counterintuitive or even controversial to call it a qualitative tool because it’s specifically trying to quantify something.
I think the best analogy for LCA is that it’s a back-of-the-envelope tool. If you really could measure everything, then sure, LCA is this wonderful idea. The problem is in the practicality of being able to collect all of that data. We can’t, and that leads us to use emissions factors and average numbers, and we model this and we model that, and we get so far away from reality that we actually can’t tell if something is positive or negative in the end.
The other problem is that it’s almost entirely subjective, which makes one LCA incomparable to another LCA depending on the context, depending on the technology. And yes, there are some standardization efforts that have been going on for decades. But if you have a ruler, no matter how much you try, it’s not going to become a screwdriver. We’re trying to use this tool to quantify things and make them the same for comparison, and we can’t because of that subjectivity.
In this space where there is a lot of money to be made, it’s very easy to manipulate things one way or another to make it look a little bit better because the method is not robust. That’s really the gist of the problems here.
One of the things you talk about in the paper is the way life cycle analysis is subject to different worldviews. Can you explain that?
It’s mostly seen in what to include or exclude in the LCA — it can have enormous impacts on the results. I think corn ethanol is the perfect example of how tedious this can be because we still don’t have an answer, precisely for that reason. The uncertainty range of the results has shrunk and gotten bigger and shrunk and gotten bigger, and it’s like, well, we still don’t know. And now, this exact same worldview debate is playing into what should be included and not included in certification for things [like carbon removal] that are going to be sold under the guise of climate action, and that just can’t be. We’ll be forever debating whether something is true.
Is this one of those things that scientists have been debating for ever, or is this argument that we should stop using life cycle analysis more of a fringe idea?
I guess I would call it a fringe idea today. There’s been plenty of criticism throughout the years, even from the very beginning when it was first created. What I have seen is that there is criticism, and then there is, “But here’s how we can solve it and continue using LCA!” I’ve only come across one other publication that specifically said, “This is not working. This is not the right tool,” and that’s from Michael Gillenwater. He’s at the Greenhouse Gas Management Institute. He was like, “What are we doing?” There might be other folks, I just haven’t come across them.
Okay, so what is the alternative to LCA that you’ve proposed in this paper?
LCA targets the middle of the supply chain, and tries to attribute responsibility there. But if you think about where on the supply chain the carbon is the most well-known, it is actually at the source, at the point of origin, before it becomes an emission. At the point where it is created out of the ground is where we know how much carbon there is. If we focus on that source through a policy that requires mandatory sequestration — for every ton of carbon that is now produced, there is a ton of carbon that’s been put away through carbon removal, and the accounting happens there, before it is sold to anybody — anybody who’s now downstream of that supply chain is already carbon neutral. There is no need to track carbon all the way down to the consumer.
We know this is accurate because that is where governments already collect royalties and taxes — they want to know exactly how much is being sold. So we already do this. The big difference is that the policy would be required there instead of taxing everybody downstream.
You’re saying that fossil fuel producers should be required to remove a ton of carbon from the atmosphere for every ton of carbon in the fuels they sell?
Yeah, and maybe I should be more specific. They should pay for an equal amount of carbon to be removed from the atmosphere. In no way are we implying that a fossil carbon producer needs to also be doing the sequestration themselves.
What would be the biggest challenges of implementing something like this?
The ultimate challenge is convincing people that we need to be managing carbon and that this is a waste management type of system. Nobody really wants to pay for waste management, and so it needs to be regulated and demanded by some authority.
What about the fact that we don’t really have the ability to remove carbon or store carbon at scale today, and may not for some time?
Yes, we need to build capacity so that eventually we can match the carbon production to the carbon removal, which is why we also proposed that the liability needs to start today, not in the future. That liability is as good as a credit card debt — you actually have to pay it. It can be paid little by little every year, but the liability is here now, and not in the future.
The risk in the system that I’m describing, or even the system that is currently being deployed, is that you have counterproductive technologies that are being developed. And by counterproductive, I mean [carbon removal] technologies that are producing more emissions than they are storing, and so they’re net-positive. You can create a technology that has no intention of removing more carbon than its sequesters. The intention is just to earn money.
Do you mean, like, the things that are supposed to be removing carbon from the atmosphere and sequestering it, they are using fossil fuels to do that, and end up releasing more carbon in the process?
Yeah, so basically, what we show in the paper is that when we get to full carbon neutrality, the market forces alone will eliminate those kinds of technologies that are counterproductive. The problem is during the transition, these technologies can be economically viable because they are cheaper than they would be if 100% of the fossil fuel they used was carbon neutral through carbon removal. And so in order to prevent those technologies from gaming the system, we need a way to artificially make the price of fossil carbon as expensive as it would be if 100% of that fossil carbon was covered by carbon removal.
That’s where the idea of permits comes in. For every amount that I produce, I now have an instant liability, which is a permit. Each of those permits has to be matched by carbon removal. And since we don’t have enough carbon removal, we have futures and these futures represent the promise of actually doing carbon removal.
What if we burn through the remaining carbon budget and we still don’t have the capacity to sequester enough carbon?
Well, then we’re going into very unchartered territory. Right now we’re just mindlessly going through this thinking that if we just reduce emissions it will be good. It won’t be good.
In the paper, you also argue against mitigating greenhouse gases other than carbon, and that seems pretty controversial to me. Why is that?
We’re not arguing against mitigating, per se. We’re arguing against lumping everything under the same carbon accounting framework because lumping hides the difficulty in actually doing something about it. It’s not that we shouldn’t mitigate other greenhouse gases — we must. It’s just that if we separate the problem of carbon away from the problem of methane, away from the problem of nitrous oxide, or CFCs, we can tackle them more effectively. Because right now, we’re trying to do everything under the same umbrella, and that doesn’t work. We don’t tackle drinking and driving by sponsoring better tires. That’s just silly, right? We wouldn’t do that. We would tackle drinking and driving on its own, and then we would tackle better tires in a different policy.
So the argument is: Most of climate change is caused by carbon; let’s tackle that separately from the others and leave tackling methane and nitrous oxide to purposefully created programs to tackle those things. Let’s not lump the calculations altogether, hiding all the differences and hiding meaningful action.
Is there still a role for life cycle analysis?
You don’t want to be regulating carbon using life cycle analysis. So you can use the life cycle analysis for qualitative purposes, but we’re pretending that it is a tool that can deliver accurate results, and it just doesn’t.
What has the response been like to this paper? What kind of feedback have you gotten?
Stunned silence!
Nobody has said anything?
In private, they have. Not in public. In private, it’s been a little bit like, “I’ve always thought this, but it seemed like there was no other way.” But then in public, think about it. Everything is built on LCA. It’s now in every single climate bill out there. Every single standard. Every single consulting company is doing LCA and doing carbon footprinting for companies. It’s a huge industry, so I guess I shouldn’t have been surprised to hear nothing publicly.
Yeah, I was gonna ask — I’ve been writing about the SEC rules and this idea that companies should start reporting their emissions to their investors, and that would all be based on LCA. There’s a lot of buy-in for that idea across the climate movement.
Yeah, but there’s definitely a fine line with make-believe. I think in many instances, we kid ourselves thinking that we’re going to have numbers that we can hang our hats on. In many instances we will not, and they will be challenged. And so at that point, what’s the point?
One thing I hear when I talk to people about this is, well, having an estimate is better than not having anything, or, don’t let the perfect be the enemy of the good, or, we can just keep working to make them better and better. Why not?
I mean, I wouldn’t say don’t try. But when it comes to actually enforcing anything, it’s going to be extremely hard to prove a number. You could just be stuck in litigation for a long time and still not have an answer.
I don’t know, to me it just seems like an endless debate while time is ticking and we will just feel good because we’ll have thought we measured everything. But we’re still not doing anything.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
“We grew quickly and made some mistakes,” Generate executive Jonah Goldman told Heatmap.
In a tumultuous time for clean energy financing, leading infrastructure investment firm Generate Capital is seeking to realign its approach. Last month the firm trumpeted its appointment of a new CEO, the first in its 11-year history. Less publicly, it also implemented firm-wide layoffs, representatives confirmed to Heatmap.
“Like many others in our space, we grew quickly and made some mistakes,” Jonah Goldman, Generate’s head of external affairs, told me. He was responding to a report from infrastructure and energy intelligence platform IJ Global, which last week reported that Generate had “shut down its equity investing arm” and laid off 50 people. While Goldman confirmed that there were indeed layoffs earlier this summer, he would not specify how many employees were let go, and disputed the claim that any particular team was dissolved. “We have not ‘shut down’ any strategies,” he told me. “Our investment team continues to find opportunities across the capital stack.”
Goldman’s comments echoed those of the firm’s new CEO, David Crane, a former undersecretary for infrastructure at the Department of Energy. In an article published to Generate’s website a few weeks ago, Crane admitted that the firm had “deviated from our operational roots,” a reference to the firm’s unconventional investment strategy.
Generate is unique as a sustainability-focused investor, in that it often acts as an owner and operator for the projects it finances rather than taking a passive equity stake The firm also provides tailored project financing options for its partners to help manage risk.
But over the past few years, Generate made a number of large equity investments in companies whose projects it did not directly oversee. These included utility-scale solar and energy storage developer Pine Gate Renewables, which is on the verge of bankruptcy, and green hydrogen developer Ambient Fuels, which was recently acquired by Electric Hydrogen amidst tumult in the industry.
“While other investors had no choice but to act as pure investors, we were distracted from who we are and what we were good at,” Crane wrote, noting that this distraction led to “poor performance in one component of our investment portfolio.” That would appear to be its equity division.
Generate’s model is designed to bridge a critical gap in the climate tech ecosystem known as the “missing middle,” the phase at which a company with some proven tech has outgrown early-stage venture capital but is still considered too risky for most traditional infrastructure investors. Historically, the firm has generated high returns by backing “leading-edge technologies,” Jigar Shah, the firm’s co-founder and former director of the DOE’s Loan Programs Office, said on the Open Circuit podcast he co-hosts. These include investments in projects involving fuel cells, anaerobic digesters, and battery storage.
Shah hasn’t worked at Generate since he joined the Biden administration in 2021. But from the outside, he says, the firm appears to have moved away from taking these riskier but potentially more lucrative bets. “They ended up with 38 people in their capital markets team, and their capital markets team went out to the marketplace and said, Hey, we have all this stuff to sell. And the people that they went to said, Well, that’s interesting, but what we really would love is boring community solar,“ Shah said on the podcast. As he saw it, Generate began making equity investments into lower-risk projects such as community solar, which naturally generated stable but lower returns. Then once interest rates went up post-Covid, that put downward pressure on equity returns.
Shah said it’s these slipping returns that have made it harder for Generate to raise capital over the past two years. Axios Pro recently reported that the firm is now exploring an IPO to bring in additional funding, following hesitation from some of its existing backers to reinvest.
While Goldman acknowledged that “there is some skepticism in the capital markets about our space now,” he disagreed with the idea that Generate has abandoned its focus on leading-edge technologies. “We have invested over the last number of years in a lot of assets that are predictable assets with predictable cash flows that have performed very strongly for our investors. And we continue to have the creativity of the team that’s focused on trying to bring newer technologies to the market to bridge the bankability gap,” he told me.
By way of example, he highlighted two of the firm’s most recent investments, a $200 million loan to Pacific Steel Group for the first green steel mill in California and a $100 million scalable credit facility for green data center developer Soluna, which allows the company to increase its borrowing capacity as new projects come online.
The latter deal was announced just weeks after Crane stepped into his new role. Having served as the CEO of five publicly traded energy companies before joining Generate, Crane is now promising to turn around the firm’s fortunes. With the Trump administration rolling back federal support for clean energy infrastructure and investors remaining cautious, Crane has said that now is the time to jump on undervalued opportunities.
“Right now, there’s a lot of noise telling people to stop writing checks. But this is precisely the time to invest in the infrastructure that will power the next twenty years,” he wrote. Goldman backed this up, telling me, “We believe managers who understand the space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
Just as tech giants such as Google, Salesforce, and Amazon were able to expand rapidly in the wake of the dot-com bubble and consolidate their positions in the market, Generate’s leadership say they’re now well positioned to help select clean energy companies do the same.
It will certainly be a boon for the sector if they can, given the abundance of undercapitalized climate tech opportunities, from clean cement to thermal energy storage, next-generation geothermal, and carbon capture, all looking to build first-of-a-kind projects. And there’s not nearly enough infrastructure funding to go around.
So if Generate has indeed lost the confidence of its investors, it’s critical that Crane, Goldman, and company regain it swiftly. Their ability to do so could shape not only which technologies drive the energy transition, but how quickly they do so.
With the federal electric vehicle tax credit now gone, automakers like Ford and Hyundai have to find other ways to make their electric cars affordable.
We finally know what Tesla means by an “affordable” electric vehicle. On Tuesday, the electric automaker revealed the stripped-down, less-fancy “Standard” version of its best-selling Model Y crossover and Model 3 sedan. These EVs will sell for several thousand dollars less than the existing versions, which are now rebranded as “Premium.”
These slightly cheaper Ys and 3s aren’t exactly the $25,000 baby Tesla that many fans and investors have anticipated for years. But the announcement is an indication of where the electric vehicle market in the United States may be headed now that the $7,500 federal tax credit for purchasing an EV is dead and gone. Automakers have spent the past few months rejiggering their lineups and slashing prices as much as they can to make sure sales don’t crater without the federal incentive.
The impending end of the tax credit on September 30 helped propel Tesla to record sales numbers in the third quarter of 2025. It was a stark reversal from months of disappointing sales stemming from factors like increased competition and Elon Musk’s political antics that alienated potential buyers. Money talks, of course; Tesla sent me a blitz of emails to make sure I didn’t forget what a good deal I could get before September’s end. But now, with the deadline passed, Musk’s company needed a new shot in the arm to stop sales from falling off a cliff.
The budget Teslas are, indeed, lesser vehicles. They have simpler headlights, less power, and less range than the now-Premium versions. They even come in fewer colors. But the prices — $40,000 for a Model Y Standard and $37,000 for a Model 3 Standard — effectively mirror what those cars would have cost if the tax credit were still in place. In other words, you can still buy a Tesla in the $35,000 to $40,000 range. It just won’t be as good a Tesla as you used to be able to get for the money.
The tax credit deadline had looked like one that would demarcate two distinct EV eras, with October 1 acting as the beginning of new, less-affordable time. But it turns out things aren’t quite so black and white. Lots of automakers are experimenting with ways to soften the financial blow for those who still want to get into an EV. After all, there’s always a loophole.
For example, as the September tax credit deadline approached, Reuters reported on a scheme orchestrated by Ford and General Motors to allow the American car giants to keep the good times going by buying their own cars. It goes like this: Before the September 30 deadline, the financing arms of these big corporations began the process of purchasing a host of their own vehicles from their dealerships. By making the down payment before the end of September, Ford and GM qualified these vehicles for the federal tax benefit. (They even checked with the IRS to make sure this plot was legitimate, Reuters said.) They plan to pass on the savings by leasing those vehicles back to everyday Americans.
According to Car and Driver, a number of citizens did something similar to what the corporations devised — that is, some buyers made their first payments on EVs that won’t be delivered to them for weeks or months in order to qualify for the tax break. These shenanigans are for the short term, though. Ford and GM could pre-purchase only so many of their own vehicles, and Ford said this deal effectively extends the tax credit only another quarter, through the end of December.
The bigger question is whether the automakers can — or will — simply cut prices on their EVs to make the loss of federal incentives sting a little less.
That’s the plan at Hyundai. The Korean giant has announced an enormous price cut on its successful Ioniq 5, one that more than makes up for the vanishing federal incentive. The most basic version of that car will fall from $42,600 to $35,000, putting it on par with the Chevy Equinox EV that’s been a hit at that price. Fancier versions of the Ioniq 5 will fall by more than $9,000 for the 2026 model year. Hyundai and its partner Kia are offering some of the best October lease deals, too.
Other car companies have begun to follow suit. BMW will simply offer a $7,500 discount on its electric models for those who take delivery by the end of October. Stellantis, the parent company of Jeep, Chrysler, Dodge, Ram, and others, will do the same for electric sales through the end of the year. No word yet on what happens after these deals expire.
Incentives like the federal tax credit for EVs aren’t meant to last forever, of course. In theory, their purpose is to lift up a new technology until it can compete at scale with the tech that has been around forever.
Whether electric cars have reached that point is a contentious question. Ford has only just announced a roadmap to overhaul its entire EV production system in order to stop losing billions on electric vehicles. Hyundai’s EVs are profitable — or, at least they were before the Trump administration began monkeying with tax incentives and tariffs. A batch of more affordable EVs are on the way, though the ever-changing map of tariffs makes it unclear exactly how much they’ll cost when they finally arrive.
The short-term picture may well be that electric cars continue to be a loss leader for some automakers still trying to find their footing in the space. Whether their shareholders will tolerate this long enough for the margins to become sustainable — well, that’s the real question.
Current conditions: In the Atlantic, the tropical storm that could, as it develops, take the name Jerry is making its way westward toward the U.S. • In the Pacific, Hurricane Priscilla strengthened into a Category 2 storm en route to Arizona and the Southwest • China broke an October temperature record with thermometers surging near 104 degrees Fahrenheit in the southeastern province of Fujian.
The Department of Energy appears poised to revoke awards to two major Direct Air Capture Hubs funded by the Infrastructure Investment and Jobs Act in Louisiana and Texas, Heatmap’s Emily Pontecorvo reported Tuesday. She got her hands on an internal agency project list that designated nearly $24 billion worth of grants as “terminated,” including Occidental Petroleum’s South Texas DAC Hub and Louisiana's Project Cypress, a joint venture between the DAC startups Heirloom and Climeworks. An Energy Department spokesperson told Emily that he was “unable to verify” the list of canceled grants and said that “no further determinations have been made at this time other than those previously announced,”referring to the canceled grants the department announced last week. Christoph Gebald, the CEO of Climeworks, acknowledged “market rumors” in an email, but said that the company is “prepared for all scenarios.” Heirloom’s head of policy, Vikrum Aiyer, said the company wasn’t aware of any decision the Energy Department had yet made.
While the list floated last week showed the Trump administration’s plans to cancel the two regional hydrogen hubs on the West Coast, the new list indicated that the Energy Department planned to rescind grants for all seven hubs, Emily reported. “If the program is dismantled, it could undermine the development of the domestic hydrogen industry,” Rachel Starr, the senior U.S. policy manager for hydrogen and transportation at Clean Air Task Force told her. “The U.S. will risk its leadership position on the global stage, both in terms of exporting a variety of transportation fuels that rely on hydrogen as a feedstock and in terms of technological development as other countries continue to fund and make progress on a variety of hydrogen production pathways and end uses.”
Remember the Tesla announcement I teased in yesterday’s newsletter? The predictions proved half right: The electric automaker did, indeed, release a cheaper version of its midsize SUV, the Model Y, with a starting price just $10 shy of $40,000. Rather than a new Roadster or potential vacuum cleaner, as the cryptic videos the company posted on CEO Elon Musk’s social media site hinted, the second announcement was a cheaper version of the Model 3, already the lower-end sedan offering. Starting at $36,990, InsideEVs called it “one of the most affordable cars Tesla has ever sold, and the cheapest in 2025.” But it’s still a far cry from Musk’s erstwhile promise to roll out a Tesla for less than $30,000.
That may be part of why the company is losing market share. As Heatmap’s Matthew Zeitlin reported, Tesla’s slice of the U.S. electric vehicle sales sank to its lowest-ever level in August despite Americans’ record scramble to use the federal tax credits before the September 30 deadline President Donald Trump’s new tax law set. General Motors, which sold more electric vehicles in the third quarter of this year than in all of 2024, offers the cheapest battery-powered passenger vehicle on the market today, the Chevrolet Equinox, which starts at $35,100.
Get Heatmap AM directly in your inbox every morning:
Trump’s pledge to revive the United States’ declining coal industry was always a gamble — even though, as Matthew reported in July, global coal demand is rising. Three separate stories published Tuesday show just how stacked the odds are against a major resurgence:
As you may recall from two consecutive newsletters last month, Secretary of Energy Chris Wright said “permitting reform” was “the biggest remaining thing” in the administration’s agenda. Yet Republican leaders in Congress expressed skepticism about tacking energy policy into the next reconciliation bill. This week, however, Utah Senator Mike Lee, the chairman of the Senate Committee on Energy and Natural Resources, called for a legislative overhaul of the National Environmental Policy Act. On Monday, the pro-development social media account Yimbyland — short for Yes In My Back Yard — posted on X: “Reminder that we built the Golden Gate Bridge in 4.5 years. Today, we wouldn’t even be able to finish the environmental review in 4.5 years.” In response, Lee said: “It’s time for NEPA reform. And permitting reform more broadly.”
Last month, a bipartisan permitting reform bill got a hearing in the House of Representatives. But that was before the government shutdown. And sources familiar with Democrats’ thinking have in recent months suggested to me that the administration’s gutting of so many clean energy policies has left Republicans with little to bargain with ahead of next year’s midterm elections.
Soon-to-be Japanese prime minister Sanae Takaichi.Yuichi Yamazaki - Pool/Getty Images
On Saturday, Japan’s long-ruling Liberal Democratic Party elected its former economic minister, Sanae Takaichi, as its new leader, putting her one step away from becoming the country’s first woman prime minister. Under previous administrations, Japan was already on track to restart the reactors idled after the 2011 Fukushima disaster. But Takaichi, a hardline conservative and nationalist who also vowed to re-militarize the nation, has pushed to speed up deployment of new reactors and technologies such as fusion in hopes of making the country 100% self-sufficient on energy.
“She wants energy security over climate ambition, nuclear over renewables, and national industry over global corporations,” Mika Ohbayashi, director at the pro-clean-energy Renewable Energy Institute, told Bloomberg. Shares of nuclear reactor operators surged by nearly 7% on Monday on the Tokyo Stock Exchange, while renewable energy developers’ stock prices dropped by as much as 15%
Researchers at the United Arab Emirates’ University of Sharjah just outlined a new method to transform spent coffee grounds and a commonly used type of plastic used in packaging into a form of activated carbon that can be used for chemical engineering, food processing, and water and air treatments. By repurposing the waste, it avoids carbon emitting from landfills into the atmosphere and reduces the need for new sources of carbon for industrial processes. “What begins with a Starbucks coffee cup and a discarded plastic water bottle can become a powerful tool in the fight against climate change through the production of activated carbon,” Dr. Haif Aljomard, lead inventor of the newly patented technology, said in a press release.