You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Life cycle analysis has some problems.
About six months ago, a climate scientist from Arizona State University, Stephanie Arcusa, emailed me a provocative new paper she had published that warned against our growing reliance on life cycle analysis. This practice of measuring all of the emissions related to a given product or service throughout every phase of its life — from the time raw materials are extracted to eventual disposal — was going to hinder our ability to achieve net-zero emissions, she wrote. It was a busy time, and I let the message drift to the bottom of my inbox. But I couldn’t stop thinking about it.
Life cycle analysis permeates the climate economy. Businesses rely on it to understand their emissions so they can work toward reducing them. The Securities and Exchange Commission’s climate risk disclosure rule, which requires companies to report their emissions to investors, hinges on it. The clean hydrogen tax credit requires hydrogen producers to do a version of life cycle analysis to prove their eligibility. It is central to carbon markets, and carbon removal companies are now developing standards based on life cycle analysis to “certify” their services as carbon offset developers did before them.
At the same time, many of the fiercest debates in climate change are really debates about life cycle analysis. Should companies be held responsible for the emissions that are indirectly related to their businesses, and if so then which ones? Are carbon offsets a sham? Does using corn ethanol as a gasoline substitute reduce emissions or increase them? Scientists have repeatedly reached opposite conclusions on that one depending on how they accounted for the land required to grow corn and what it might have been used for had ethanol not been an option. Though the debate plays out in calculations, it’s really a philosophical brawl.
Everybody, for the most part, knows that life cycle analysis is difficult and thorny and imprecise. But over and over, experts and critics alike assert that it can be improved. Arcusa disagrees. Life cycle analysis, she says, is fundamentally broken. “It’s a problematic and uncomfortable conclusion to arrive at,” Arcusa wrote in her email. “On the one hand, it has been the only tool we have had to make any progress on climate. On the other, carbon accounting is captured by academia and vested interests and will jeopardize global climate goals.”
When I recently revisited the paper, I learned that Arcusa and her co-authors didn’t just critique life cycle analysis, they proposed a bold alternative. Their idea is not economically or politically easy, but it also doesn’t suffer from the problems of trying to track carbon throughout the supply chain. I recently called her up to talk through it. Our conversation has been edited for clarity.
Can you walk me through what the biggest issues with life cycle analysis are?
So, life cycle analysis is a qualitative tool —
It seems kind of counterintuitive or even controversial to call it a qualitative tool because it’s specifically trying to quantify something.
I think the best analogy for LCA is that it’s a back-of-the-envelope tool. If you really could measure everything, then sure, LCA is this wonderful idea. The problem is in the practicality of being able to collect all of that data. We can’t, and that leads us to use emissions factors and average numbers, and we model this and we model that, and we get so far away from reality that we actually can’t tell if something is positive or negative in the end.
The other problem is that it’s almost entirely subjective, which makes one LCA incomparable to another LCA depending on the context, depending on the technology. And yes, there are some standardization efforts that have been going on for decades. But if you have a ruler, no matter how much you try, it’s not going to become a screwdriver. We’re trying to use this tool to quantify things and make them the same for comparison, and we can’t because of that subjectivity.
In this space where there is a lot of money to be made, it’s very easy to manipulate things one way or another to make it look a little bit better because the method is not robust. That’s really the gist of the problems here.
One of the things you talk about in the paper is the way life cycle analysis is subject to different worldviews. Can you explain that?
It’s mostly seen in what to include or exclude in the LCA — it can have enormous impacts on the results. I think corn ethanol is the perfect example of how tedious this can be because we still don’t have an answer, precisely for that reason. The uncertainty range of the results has shrunk and gotten bigger and shrunk and gotten bigger, and it’s like, well, we still don’t know. And now, this exact same worldview debate is playing into what should be included and not included in certification for things [like carbon removal] that are going to be sold under the guise of climate action, and that just can’t be. We’ll be forever debating whether something is true.
Is this one of those things that scientists have been debating for ever, or is this argument that we should stop using life cycle analysis more of a fringe idea?
I guess I would call it a fringe idea today. There’s been plenty of criticism throughout the years, even from the very beginning when it was first created. What I have seen is that there is criticism, and then there is, “But here’s how we can solve it and continue using LCA!” I’ve only come across one other publication that specifically said, “This is not working. This is not the right tool,” and that’s from Michael Gillenwater. He’s at the Greenhouse Gas Management Institute. He was like, “What are we doing?” There might be other folks, I just haven’t come across them.
Okay, so what is the alternative to LCA that you’ve proposed in this paper?
LCA targets the middle of the supply chain, and tries to attribute responsibility there. But if you think about where on the supply chain the carbon is the most well-known, it is actually at the source, at the point of origin, before it becomes an emission. At the point where it is created out of the ground is where we know how much carbon there is. If we focus on that source through a policy that requires mandatory sequestration — for every ton of carbon that is now produced, there is a ton of carbon that’s been put away through carbon removal, and the accounting happens there, before it is sold to anybody —anybody who’s now downstream of that supply chain is already carbon neutral. There is no need to track carbon all the way down to the consumer.
We know this is accurate because that is where governments already collect royalties and taxes — they want to know exactly how much is being sold. So we already do this. The big difference is that the policy would be required there instead of taxing everybody downstream.
You’re saying that fossil fuel producers should be required to remove a ton of carbon from the atmosphere for every ton of carbon in the fuels they sell?
Yeah, and maybe I should be more specific. They should pay for an equal amount of carbon to be removed from the atmosphere. In no way are we implying that a fossil carbon producer needs to also be doing the sequestration themselves.
What would be the biggest challenges of implementing something like this?
The ultimate challenge is convincing people that we need to be managing carbon and that this is a waste management type of system. Nobody really wants to pay for waste management, and so it needs to be regulated and demanded by some authority.
What about the fact that we don’t really have the ability to remove carbon or store carbon at scale today, and may not for some time?
Yes, we need to build capacity so that eventually we can match the carbon production to the carbon removal, which is why we also proposed that the liability needs to start today, not in the future. That liability is as good as a credit card debt — you actually have to pay it. It can be paid little by little every year, but the liability is here now, and not in the future.
The risk in the system that I’m describing, or even the system that is currently being deployed, is that you have counterproductive technologies that are being developed. And by counterproductive, I mean [carbon removal] technologies that are producing more emissions than they are storing, and so they’re net-positive. You can create a technology that has no intention of removing more carbon than its sequesters. The intention is just to earn money.
Do you mean, like, the things that are supposed to be removing carbon from the atmosphere and sequestering it, they are using fossil fuels to do that, and end up releasing more carbon in the process?
Yeah, so basically, what we show in the paper is that when we get to full carbon neutrality, the market forces alone will eliminate those kinds of technologies that are counterproductive. The problem is during the transition, these technologies can be economically viable because they are cheaper than they would be if 100% of the fossil fuel they used was carbon neutral through carbon removal. And so in order to prevent those technologies from gaming the system, we need a way to artificially make the price of fossil carbon as expensive as it would be if 100% of that fossil carbon was covered by carbon removal.
That’s where the idea of permits comes in. For every amount that I produce, I now have an instant liability, which is a permit. Each of those permits has to be matched by carbon removal. And since we don’t have enough carbon removal, we have futures and these futures represent the promise of actually doing carbon removal.
What if we burn through the remaining carbon budget and we still don’t have the capacity to sequester enough carbon?
Well, then we’re going into very unchartered territory. Right now we’re just mindlessly going through this thinking that if we just reduce emissions it will be good. It won’t be good.
In the paper, you also argue against mitigating greenhouse gases other than carbon, and that seems pretty controversial to me. Why is that?
We’re not arguing against mitigating, per se. We’re arguing against lumping everything under the same carbon accounting framework because lumping hides the difficulty in actually doing something about it. It’s not that we shouldn’t mitigate other greenhouse gases — we must. It’s just that if we separate the problem of carbon away from the problem of methane, away from the problem of nitrous oxide, or CFCs, we can tackle them more effectively. Because right now, we’re trying to do everything under the same umbrella, and that doesn’t work. We don’t tackle drinking and driving by sponsoring better tires. That’s just silly, right? We wouldn’t do that. We would tackle drinking and driving on its own, and then we would tackle better tires in a different policy.
So the argument is: Most of climate change is caused by carbon; let’s tackle that separately from the others and leave tackling methane and nitrous oxide to purposefully created programs to tackle those things. Let’s not lump the calculations altogether, hiding all the differences and hiding meaningful action.
Is there still a role for life cycle analysis?
You don’t want to be regulating carbon using life cycle analysis. So you can use the life cycle analysis for qualitative purposes, but we’re pretending that it is a tool that can deliver accurate results, and it just doesn’t.
What has the response been like to this paper? What kind of feedback have you gotten?
Stunned silence!
Nobody has said anything?
In private, they have. Not in public. In private, it’s been a little bit like, “I’ve always thought this, but it seemed like there was no other way.” But then in public, think about it. Everything is built on LCA. It’s now in every single climate bill out there. Every single standard. Every single consulting company is doing LCA and doing carbon footprinting for companies. It’s a huge industry, so I guess I shouldn’t have been surprised to hear nothing publicly.
Yeah, I was gonna ask — I’ve been writing about the SEC rules and this idea that companies should start reporting their emissions to their investors, and that would all be based on LCA. There’s a lot of buy-in for that idea across the climate movement.
Yeah, but there’s definitely a fine line with make-believe. I think in many instances, we kid ourselves thinking that we’re going to have numbers that we can hang our hats on. In many instances we will not, and they will be challenged. And so at that point, what’s the point?
One thing I hear when I talk to people about this is, well, having an estimate is better than not having anything, or, don’t let the perfect be the enemy of the good, or, we can just keep working to make them better and better. Why not?
I mean, I wouldn’t say don’t try. But when it comes to actually enforcing anything, it’s going to be extremely hard to prove a number. You could just be stuck in litigation for a long time and still not have an answer.
I don’t know, to me it just seems like an endless debate while time is ticking and we will just feel good because we’ll have thought we measured everything. But we’re still not doing anything.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Secretary of Energy Chris Wright canceled 24 decarbonization grants worth $3.7 billion.
Secretary of Energy Chris Wright is clawing back 24 grants for projects to cut emissions from heavy industry after signaling earlier this month that he was reviewing the Biden administration’s award decisions. The total lost funding comes to just over $3.7 billion, and would have helped a wide range of companies, including those in food and beverage production, steelmaking, cement, and chemicals deploy cutting edge clean energy solutions.
The agency, however, decided that the projects “failed to advance the energy needs of the American people, were not economically viable and would not generate a positive return on investment of taxpayer dollars,” according to the announcement.
Most of the cancelled projects were part of the Industrial Demonstration Program, which was created by the Inflation Reduction Act and designed to help commercialize decarbonization solutions that were past the early experimental stage, but were also not quite ready for mass deployment.
Proponents of the program found the DOE’s decision outrageous. “They’re not building an economy — they’re dismantling it and giving away the future of manufacturing,” Evan Gillespie, a partner at the advocacy group Industrious Labs, said in a statement. Canceling these projects is “handing the competitive advantage to Europe, China, Canada, and other nations that are making significant investments in clean manufacturing while leaving the U.S behind,” he added.
The Kraft Heinz Food Company, for example, was supposed to get $172 million to swap out fossil fuel-fired boilers and other heating equipment for electric heat pumps and solar thermal systems at 10 of its factories. “This project seeks to help a major American brand achieve deep decarbonization and serve as an example for other U.S. food and beverage companies to reduce emissions from process heat while reducing energy costs,” the original award from the DOE said. Diageo, the liquor conglomerate, and Kohler, the kitchen and bathroom appliance brand, were also among the awardees.
Cement production is one of the biggest sources of industrial emissions in the world, and also among the most difficult to decarbonize due to an integral chemical reaction that releases carbon into the atmosphere regardless of whether the plant burns fossil fuels. Experts aren’t sure yet what the best solution will be, and the DOE program awarded a variety of projects to test different pathways.
Heidelberg Materials, one of the largest cement companies in the world, was going to get $500 million to demonstrate the first cement plant to capture and sequester its carbon emissions in the U.S. A company called Sublime Systems that’s using an alternative chemistry and electric currents to make cement was supposed to receive $87 million to build its first commercial-scale factory in Holyoke, Massachusetts. Just last week, Sublime signed a deal to supply 623,000 metric tons of zero-carbon cement to Microsoft, in part to support the tech giant’s data center buildout. Another company called Brimstone was awarded $189 million to produce low-carbon cement alongside alumina, the base material used to make aluminum.
“Given our project's strong alignment with President Trump's priority to increase U.S. production of critical minerals, we believe this was a misunderstanding,” a spokesperson for Brimstone told me. “Brimstone's Rock Refinery represents the only economically viable way to produce the critical mineral alumina in the U.S. from U.S.-mined rocks. As the first U.S.-based alumina plant in a generation, our project — which would also make Portland cement — would clear a 'mine-to-metal' path for U.S. aluminum production, fortifying the U.S. critical mineral supply chain and creating thousands of jobs.”
Sublime also shared a statement asserting that its technology would enable the Trump administration’s priorities. “We continue our bipartisan appeal to leaders who recognize that investing in American-invented breakthrough industrial technologies can address multiple policy priorities in tandem to the benefit of Americans from all walks of life,” Sublime said. The company added that it has “prepared for the possibility of this disappointing outcome” and is “evaluating various scenarios that leave our scale-up unimpeded.”
Oil and gas companies were also hit. A $332 million grant to help Exxon switch to low-carbon hydrogen at one of its refineries was canceled, as were $540 million in grants for the energy company Calpine to install carbon capture on its natural gas plants.
“It is hugely disappointing to see these projects canceled — projects that had already progressed through a rigorous, months-long review process by technical experts at DOE,” Jessie Stolark, the executive director of the Carbon Capture Coalition, said in a statement. While Wright said the terminations would generate taxpayer savings, Stolark argued they were depriving Americans of economic benefits. “Every dollar invested by the American taxpayer can lead to up to $4 in economic output through additional supply and material orders, job creation, and broader economic benefits to regional economies,” she wrote, citing a Department of Energy-authored analysis.
None of the awardees responded to my inquiry as to whether they would consider pursuing legal challenges. According to the law under which the program was created, the funding was to be awarded “on a competitive basis,” based on the expected greenhouse gas emission reductions from the project and its potential to provide the greatest benefit to the greatest number of people. Additional criteria in the agency’s application process said it would evaluate projects based on the “degree to which the applicant assesses and demonstrates potential market competitiveness and sustainability for the proposed project, technology, and manufactured product(s) through market analysis and offtake agreements.”
Notably absent from the list of canceled projects is a grant for the steelmaking company Cleveland Cliffs. Earlier this month, I reported that the company was renegotiating its award under the Industrial Demonstration Program. On an earnings call, its CEO said it was abandoning plans to use clean energy and instead looking to use the funds to extend the life of its fossil fuel-fired blast furnace.
If gone unchallenged, the funding is not likely to be re-awarded to other projects. The budget bill that is currently working its way through Congress would rescind any money from the Industrial Demonstrations Program that isn’t under contract.
Especially with carbon capture tax incentives on the verge of disappearing, perhaps At One Ventures founder Tom Chi is onto something.
Technology to suck carbon dioxide out of the air — a.k.a. direct air capture — has always had boosters who say it’s necessary to reach net zero, and detractors who view it as an expensive fig leaf for the fossil fuel industry. But when the typical venture capitalist looks at the tech, all they see is dollar signs. Because while the carbon removal market is still in its early stages, if you look decades down the line, a technology that can permanently remove residual emissions in a highly measurable fashion has got to be worth a whole lot, right? Right?
Not so, says Tom Chi, founder of At One Ventures and co-founder of Google’s technological “moonshot factory,” X. Bucking the dominant attitude, he’s long vowed to stay away from DAC altogether. “If you’re trying to collect carbon dioxide in the air, it’s like trying to suck all the carbon dioxide through a tiny soda straw,” Chi told me. Given that the concentration of CO2 in the atmosphere sits at about 0.04%, “2,499 molecules out of 2,500 are not the one you’re trying to get,” Chi said. “These are deep, physical disadvantages to the approach.”
He’s obviously not the first to realize this. DAC companies and their scientists are well aware of the challenges they face. But investors are generally comfortable taking on risk across a host of different technologies and industries on the premise that at least a few of their portfolio companies will hit it big. As such, a nascent market and challenging physics are not inherent reasons to steer clear. DAC’s potential to secure cash-rich oil and gas industry buyers is pure upside.
Most prominent climate tech venture capital firms — including Lowercarbon Capital, Breakthrough Energy Ventures, Prelude Ventures, and Khosla Ventures — have at least one DAC company in their portfolios. At One Ventures itself has backed everything from producing oxygen on the moon (while also decarbonizing steel) to indoor solar cells and thorium-powered nuclear reactors, a hobbyhorse of techno-optimist nuclear bros and former presidential candidate Andrew Yang. So the fact that Chi won’t touch DAC is no small deal.
His hesitation stems from a matter of scale.To capture that 0.04% of atmospheric carbon, many DAC companies use giant fans to pull in large volumes of air from the atmosphere, which then pass through either a solid filter or a liquid solution that chemically captures the carbon dioxide. Although some companies are pursuing alternate approaches that rely on passive air contact rather than energy-intensive fans, either way, the amount of air that reaches any DAC machine’s so-called “collection aperture” is minuscule “relative to the scale of planet Earth,” Chi told me.
He views this as the core pitfall of the technology. “Half of the [operating expense] of the system is just trying to go after a technical disadvantage that you took on from day one,” Chi said. “By comparison, nature based restorations have enormous apertures,” Chi told me. “Think about the aperture of all the forests on the planet. Think about the aperture of all the soils on the planet, all the wetlands on the planet, the ocean.” His preferred methods of carbon removal are all nature-based. “In addition, their sequestration tends to be photosynthesis-powered, which means we’re not burning natural gas or using grid electricity in order to go make that thing work.”
Nature-based solutions often raise eyebrows in the carbon removal and reduction space, though, bringing to mind highly questionable carbon offsets such as those earned via “avoided deforestation.” The inherent counterfactual — would these trees really have been cut down if we didn’t buy these credits? — is difficult to measure with any certainty, and a 2023 investigation by The Guardian found that the majority of these types of credits are essentially bogus.
This same essential question around measurability plagues everything from afforestation and reforestation to soil carbon sequestration, biochar application, and wetland restoration. It’s extremely difficult to measure how much carbon is stored — and for how long — within complex, open ecosystems. On the other hand, engineered solutions such as direct air capture or bioenergy with carbon capture and storage are simple to quantify and promise permanent storage, making them attractive to large corporate buyers and easy to incentivize via mechanisms such as the federal carbon sequestration tax credit.
When I put all this to Chi, his response was simple. “It’s not an advantage to be able to measure something that can’t solve the problem,” he told me. For a moment, it seemed as if we had hit an intellectual dead end. For now, carbon removals and reductions are mainly driven by the voluntary carbon market, where prices are based on the exact tonnage of carbon removed. Reputable buyers don’t want to be burned again by investing in difficult to quantify offsets, and the current administration certainly doesn’t seem likely to step in with nature-based removal mandates or purchasing commitments anytime soon.
Chi’s answer to this conundrum is “financial enclosure,” essentially a fancy way of saying we need to monetize the value of nature-based systems. In many cases, he admitted, we don’t quite yet know how to do that, at least in a way that benefits the common good. “We figured out how to financially enclose a forest, clear cut it in order to go make board feed and paper and pulp,” he explained. But we don’t know how to financially enclose the benefit of preserving said forest, nor many other ecosystems such as wetlands that serve as highly effective carbon sinks.
At One Ventures has backed companies that work with a variety of buyers — from national governments to mining companies and farmers — that have a financial stake in (or are legally required to care about) ecosystem preservation and restoration. “Sometimes people break nature hard enough that it becomes that obvious. And then they have to go fix it,” Chi told me. “We’re going to invest in the companies that make it possible to go do that at incredibly low cost structures.”
One portfolio company, Dendra Systems, uses robots, drones, and other automated methods to do large scale ecosystem restoration, such as replanting mangroves in parts of the world such as Myanmar and Abu Dhabi where they’ve been cleared for property development or industrial use. The governments of both countries are paying Dendra to do this after realizing that removing mangroves had catastrophic consequences —- destroying subsistence fishing, wrecking erosion breaks — that would cost more to ameliorate than simply replanting the trees.
Then there’s Dalan Animal Health, which is developing vaccines for honeybees as hives become more vulnerable to disease. While not directly focused on carbon removal, the company has successfully “financially enclosed” pollination, as industrial farmers whose crops depend on pollinators will pay for the vaccine. This helps restore healthy ecosystems that can ultimately draw down more carbon. Chi told me that insurance companies have also shown a willingness to pay for nature-based solutions that can help lessen the impact of disasters such as floods or hurricanes.
While the carbon benefits of these companies are simply a bonus, the firm has invested in one pure play removal company, Gigablue. This startup releases engineered particles into the ocean that attract carbon-absorbing phytoplankton. As the particles accumulate more plankton, they sink to the ocean floor, where the carbon is then stored. Using onsite sampling and other advanced techniques, Chi told me that this tech is “very measurable” while also having an “aperture [that] is as wide as the ocean area that we’ve sprinkled things onto.”
Though Chi dislikes the illogical nature of the voluntary carbon market — he would much prefer a “polluter pays” system where money is directed towards nature-based sequestration — he knows that with the markets we have, precise measurability is paramount. So At One Ventures is throwing money at this, too. Portfolio company Chloris Geospatial combines satellite data and machine learning to measure biomass from space and track changes over time, helping legitimize forest-based removals. And Miraterra is focused on novel sensing tech and advanced modeling that allows farmers to calculate the amount of carbon in their soil.
But even if the carbon stored in natural ecosystems never becomes quite as measurable as engineered carbon removals, Chi thinks investors, companies, or governments should still be going all in. “When your volume is so much larger, then you can even throw big error bars around your measurability and still be miles ahead,” he told me.
Many investors say they want it all. You’ll see them funding nature-based and engineered carbon removal companies alike in an effort to take a “portfolio approach” to carbon removal. Chi, unsurprisingly, thinks that’s hogwash. “It’s weasel words to be like, it’s an important part of this portfolio,” he told me. The United Nations Intergovernmental Panel on Climate Change also advocates for a diversified approach, without saying DAC itself is strictly necessary. DAC is “not going to do 1%, and it’s going to be massively more expensive than your other 99%,” Chi said. “At some point you’re going to be like, why is this in the portfolio?”
It’s certainly a more blunt assessment of the industry’s viability (or lack thereof) than I’ve heard any investor hazard before. But there may be more folks starting to come around to Chi’s perspective. With government support for DAC in question and the utility of carbon capture tax credits — which only benefit engineered removals — deeply threatened, venture funding for DAC is down over 60% from this time last year, Bloomberg reported.
Rajesh Swaminathan, a climate tech investor at Khosla Ventures told the publication that while many investors have taken bets on direct air capture, “Now, people are stepping back and saying, ‘Why didn’t I look at the economics there?’” Khosla itself is an investor in the DAC company Spiritus.
So what’s a longterm skeptic like Chi to do in this moment of doubt? As he told me, “I’m just going to keep on giving talks on it, and I know that physics is on my side.”
On the environmental reviews, Microsoft’s emissions, and solar on farmland
Current conditions: Enormous wildfires in Manitoba, Canada, will send smoke into the Midwestern U.S. and Great Plains this weekend • Northwest England is officially experiencing a drought after receiving its third lowest rainfall since 1871 • Thunderstorms are brewing in Washington, D.C., where the Federal Court of Appeals paused an earlier ruling throwing out much of Trump’s tariff agenda.
The Supreme Court ruled Thursday that courts should show more deference to agencies when hearing lawsuits over environmental reviews.
The case concerned a proposed 88-mile train line in Utah that would connect its Uinta Basin (and its oil resources) with the national rail network. Environmental groups and local governments claimed that the environmental impact statement submitted by the federal Surface Transportation Board did not pay enough attention to the effects of increased oil drilling and refining that the rail line could induce. The D.C. Circuit agreed, vacating the EIS; the Supreme Court did not, overturning the D.C. Circuit in an 8-0 decision.
The National Environmental Policy Act, or NEPA, requires the federal government to study the environmental impact of its actions. The D.C. Circuit “failed to afford the Board the substantial judicial deference required in NEPA cases and incorrectly interpreted NEPA to require the Board to consider the environmental effects of upstream and downstream projects that are separate in time or place,” Justice Brett Kavanaugh wrote for the court.
The court’s decision could sharply limit the ability of the judicial branch to question environmental reviews by agencies under NEPA, and could pave the way for more certain and faster approvals for infrastructure projects.
At least, that’s what Kavanaugh hopes. The current NEPA process, he writes, foists “delay upon delay” on developers and agencies, so “fewer projects make it to the finish line. Indeed, fewer projects make it to the starting line.”
Map of the approved railway route.Source: Uinta Basin Railway Final Environmental Impact Statement
The Department of Agriculture is planning to retool a popular financing program, Rural Energy for America, to discourage solar development on agricultural land, Heatmap’s Jael Holzman exclusively reported.
“Farmland should be for agricultural production, not solar production,” a USDA spokesperson told Heatmap. The comments echoed a USDA report released last week criticizing the use of solar on agricultural land. The report said that the USDA will “disincentivize the use of federal funding at USDA for solar panels to be installed on productive farmland through prioritization points and regulatory action.” The USDA will also “call on state and local governments to work alongside USDA on local solutions.”
The daughter of a woman who died during the Pacific Northwest “Heat Dome” in 2021 sued seven oil and companies for wrongful death in Washington state court, The New York Times reported Thursday.
“The suit alleges that they failed to warn the public of the dangers of the planet-warming emissions produced by their products and that they funded decades-long campaigns to obscure the scientific consensus on global warming,” according to Times reporter David Gelles.
Several cities and states have brought suits making similar claims that oil and gas companies misled the public about the threat of climate change. Earlier this week, a German court threw out a suit from a Peruvian farmer against a German utility, which claimed that the utility’s commissions helped put his town at risk from glacial flooding.
The seven companies named in the lawsuit are Exxon Mobil, Chevron, Shell, BP, ConocoPhillips, Phillips 66, and Olympic Pipeline Company, a subsidiary managed by BP. None of them commented on the suit.
Tech giant Microsoft disclosed in its annual sustainability report that its carbon emissions have grown by 23.4% since 2020, even as the company has a goal to become “carbon negative” by 2030. The upside to the figures is that the growth in emissions was due to a much larger increase in energy use and business activity, not from using dirtier energy. In that same time period, Microsoft’s revenue has grown 71%, and its energy use has grown 168%.
“It has become clear that our journey towards being carbon negative is a marathon,” the report read. The company said it had contracted 34 gigawatts of non-emitting power generation and had agreements to procure 30 million metric tons of carbon removal.
The company has set out to reduce its indirect Scope 3 emissions “by more than half” by 2030 from the 11.5 million metric tons it reported in 2020, as its Scope 1 and Scope 2 emissions fall to close to zero. It will become “carbon negative,” it hopes, by purchasing carbon removal.
Microsoft attempts to reduce emissions in its supply chain by procuring low- or no-carbon fuels and construction materials. Last week the tech giant signed a purchasing agreement with Sublime Systems for 600,000 tons of low-carbon cement.
The Nuclear Regulatory Commission announced it had approved a 77-megawatt small modular reactor design. This is the second SMR design approved by the NRC, following approval of a smaller design in 2020. Both are products of the SMR company NuScale, and neither has yet been deployed. A project to build the earlier design in Idaho was abandoned in 2023.
The NRC review was set to be completed in July of this year. Coming in ahead of scheduled demonstrates “the agency’s commitment to safely and efficiently enable new, advanced reactor technology,” the Commission said in a press release.
Congress and the Biden and Trump administrations have pushed the NRC to move faster and to encourage the development of small modular reactors. No SMR has been built in the United States, nor is there any current plan to do so that has been publicly disclosed. NuScale’s chief executive told Bloomberg that he hopes to have a deal signed by the end of the year and an operational plant by the end of the decade.
Tesla veteran Drew Baglino’s Heron Power raised a $38 million round of Series A funding for a new product designed to replace “legacy transformers and power converters by directly connecting rapidly growing megawatt-scale solar, batteries, and AI data centers to medium voltage transmission,” Baglino wrote on X.