You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
According to IPCC author Andy Reisinger, “net zero by 2050” misses some key points.
Tackling climate change is a complex puzzle. Hitting internationally agreed upon targets to limit warming requires the world to reduce multiple types of greenhouse gases from a multiplicity of sources on diverse timelines and across varying levels of responsibility and control by individual, corporate, and state actors. It’s no surprise the catchphrase “net zero by 2050” has taken off.
Various initiatives have sprung up to distill this complexity for businesses and governments who want to do (or say they are doing) what the “science says” is necessary. The nonprofit Science Based Targets initiative, for example, develops standard roadmaps for companies to follow to act “in line with climate science.” The groups also vets corporate plans and deems them to either be “science based” or not. Though entirely voluntary, SBTi’s approval has become a nearly mandatory mark of credibility. The group has validated the plans of more than 5,500 companies with more than $46 trillion in market capitalization — nearly half of the global economy.
But in a commentary published in the journal Nature last week, a group of Intergovernmental Panel on Climate Change experts argue that SBTi and other supposedly “science based” target-setting efforts misconstrue the science and are laden with value judgments. By striving to create straightforward, universal rules, they flatten more nuanced considerations of which emissions must be reduced, by whom and by when.
“We are arguing that those companies and countries that are best resourced, have the highest capacity to act, and have the highest responsibility for historical emissions, probably need to go a lot further than the global average,” Andy Reisinger, the lead author of the piece, told me.
In response to the paper, SBTi told me it “welcomes debate,” and that “robust debate is essential to accelerate corporate ambition and climate action.” The group is currently in the process of reviewing its Net-Zero Standard and remains “committed to refining our approaches to ensure they are effective in helping corporates to drive the urgent emissions reductions needed to combat the climate crisis.”
The commentary comes as SBTi’s reputation is already on shaky ground. In April, its board appeared to go rogue and said that the group would loosen its standards for the use of carbon offsets. The announcement was met first with surprise and later with fierce protest from the nonprofit’s staff and technical council, who had not been consulted. Environmental groups accused SBTi of taking the “science” out of its targets. The board later walked back its statement, saying that no change had been made to the rules, yet.
But interestingly enough, the new Nature commentary argues that SBTi’s board was actually on the right track. I spoke to Reisinger about this, and some of the other ways he thinks science based targets “miss the mark.”
Reisinger, who’s from New Zealand, was the vice-chair of the United Nations Intergovernmental Panel on Climate Change’s mega-report on climate mitigation from 2022. I caught him just as he had arrived in Sofia, Bulgaria, for a plenary that will determine the timeline for the next big batch of UN science reports. Our conversation has been edited for length and clarity.
Was there something in particular that inspired you to write this? Or were you just noticing the same issues over and over again?
There were probably several things. One is a confusion that’s quite prevalent between net zero CO2 emissions and net zero greenhouse gas emissions. The IPCC makes clear that to limit warming at any level, you need to reach net zero CO2 emissions, because it’s a long lived greenhouse gas and the warming effect accumulates in the atmosphere over time. You need deep reductions of shorter lived greenhouse gases like methane, but they don’t necessarily have to reach zero. And yet, a lot of people claim that the IPCC tells us that we have to reach net zero greenhouse gas emissions by 2050, which is simply not the case.
Of course, you can claim that there’s nothing wrong, surely, with going to net zero greenhouse gas emissions because that’s more ambitious. But there’s two problems with that. One is, if you want to use science, you have to get the science correct. You can’t just make it up and still claim to be science-based. Secondly, it creates a very uneven playing field between those who mainly have CO2 emissions and those who have non-CO2 emissions as a significant part of their emissions portfolio — which often are much harder to reduce.
Can you give an example of what you mean by that?
You can rapidly decarbonize and actually approach close to zero emissions in your energy generation, if that’s your dominant source of emissions. There are viable solutions to generate energy with very low or no emissions — renewables, predominantly. Nuclear in some circumstances.
But to give you another example, in Australia, the Meat and Livestock Association, they set a net zero target, but they subsequently realized it’s much harder to achieve it because methane emissions from livestock are very, very difficult to reduce entirely. Of course you can say, we’ll no longer produce beef. But if you’re the Cattle Association, you’re not going to rapidly morph into producing a different type of meat product. And so in that case, achieving net zero is much more challenging. Of course, you can’t lean back and say, Oh, it’s too difficult for us, therefore we shouldn’t try.
I want to walk through the three main points to your argument for why science-based targets “miss the mark.” I think we’ve just covered the first. The second is that these initiatives put everyone on the same timeline and subject them to the same rules, which you say could actually slow emissions reductions in the near term. Can you explain that?
The Science Based Targets initiative in particular, but also other initiatives that provide benchmarks for companies, tend to want to limit the use of offsets, where a company finances emission reductions elsewhere and claims them to achieve their own targets. And there’s very good reasons for that, because there’s a lot of greenwashing going on. Some offsets have very low integrity.
At the same time, if you set a universal rule that all offsets are bad and unscientific, you’re making a major mistake. Offsets are a way of generating financial flows towards those with less intrinsic capacity to reduce their emissions. So by making companies focus only on their own reductions, you basically cut off financial flows that could stimulate emission reductions elsewhere or generate carbon dioxide removals. Then you’re creating a problem for later on in the future, when we desperately need more carbon dioxide removal and haven’t built up the infrastructure or the accountability systems that would allow that.
As you know, there’s a lot of controversy about this right now. There are many scientists who disagree with you and don’t want the Science Based Targets initiative to loosen its rules for using offsets. Why is there this split in the scientific community about this?
I think the issue arises when you think that net zero by 2050 is the unquestioned target. But if you challenge yourself to say, well net zero by 2050 might be entirely unambitious for you, you have to reduce your own emissions and invest in offsets to go far beyond net zero by 2050 — then you might get a different reaction to it.
I think everybody would agree that if offsets are being used instead of efforts to reduce emissions that are under a company’s direct control, and they can be reduced, then offsets are a really bad idea. And of course, low integrity offsets are always a bad idea. But the solution to the risk of low integrity cannot be to walk away from it entirely, because otherwise you’ve further reduced incentives to actually generate accountability mechanisms. So the challenge would be to drive emission reductions at the company level, and on top of that, create incentives to engage in offsets, to increase financial flows to carbon dioxide removal — both permanent and inherently non permanent — because we will need it.
My understanding is that groups like SBTi and some of these other carbon market integrity initiatives agree with what you’ve just said — even if they don’t support offsetting emissions, they do support buying carbon credits to go above and beyond emissions targets. They are already advocating for that, even if they’re not necessarily creating the incentives for it.
I mean, that’s certainly a move in the right direction. But it’s creating this artificial distinction between what the science tells you, the “science based target,” and then the voluntary effort beyond that. Whereas I think it has to become an obligation. So it’s not a distinction between, here’s what the science says, and here’s where your voluntary, generous, additional contribution to global efforts might go. It is a much more integrated package of actions.
I think we’re starting to get at the third point that your commentary makes, which is about how these so-called science-based targets are inequitable. How does that work?
There’s a rich literature on differentiating targets at the country level based on responsibility for warming, or a capacity-based approach that says, if you’re rich and we have a global problem, you have to use your wealth to help solve the global problem. Most countries don’t because the more developed you are, the more unpleasant the consequences are.
At the company level, SBTi, for example, tends to use the global or regional or sectoral average rate of reductions as the benchmark that an individual company has to follow. But not every company is average, and systems transitions follow far more complex dynamics. Some incumbents have to reduce emissions much more rapidly, or they go out of business in order to create space for innovators to come in, whose emissions might rise in the near term before they go down, but with new technologies that allow deeper reductions in the long term. Assuming a uniform rate of reduction levels out all those differences.
It’s far more challenging to translate equity into meaningful metrics at the company level. But our core argument is, just because it’s hard, that cannot mean let’s not do it. So how can we challenge companies to disclose their thinking, their justification about what is good enough?
The Science Based Targets initiative formed because previously, companies were coming up with their own interpretations of the science, and there was no easy way to assess whether these plans were legitimate. Can you really imagine a middle ground where there is still some sort of policing mechanism to say whether a given corporate target is good enough?
That’s what we try to sketch as a vision, but it certainly won’t be easy. I also want to emphasize that we’re not trying to attack SBTi in principle. It’s done a world of good. And we certainly don’t want to throw the baby out with the bathwater to just cancel the idea. It’s more to use it as a starting point. As we say in our paper, you can almost take an SBTi target as the definition of what is not sufficient if you’re a company located in the Global North or a multinational company with high access to resources — human, technology and financial.
It was a wild west before SBTi and we’re not saying let’s go back to the wild west. We’re saying the pendulum might have swung too far to a universal rule that applies to everybody, but therefore applies to nobody.
There’s one especially scathing line in this commentary. You write that these generic rules “result in a pseudo-club that inadequately challenges its self-selected members while setting prohibitive expectations for those with less than average capacity.” We’ve already talked about the second half of this statement, but what do you mean by pseudo-club?
You write a science based target as a badge of achievement, a badge of honor on your company profile, assuming that therefore you have done all that can be expected of you when it comes to climate change. Most of the companies that have adopted science based targets are located in the Global North, or operate on a multinational basis and have therefore quite similar capacity. If that’s what we’re achieving — and then there’s a large number of companies that can’t possibly, under their current capacity, set science-based targets because they simply don’t have the resources — then collectively, we will fail. Science cannot tell you whether you have done as much as you could be doing. If we let the simplistic rules dominate the conversation, then we’re not going to be as ambitious as we need to be.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.
How Hurricane Helene is still putting the Southeast at risk.
Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.
While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.
Scheuller said North Carolina had been experiencing drought conditions early in the year, followed by intense rain leading up to Helene’s landfall. Then it went dry again — according to the U.S. Drought Monitor, much of the state was back to some level of drought condition as of mid-November. The NIFC forecast report says the same is true for much of the region, including Florida, despite its having been hit by Hurricane Milton soon after Helene.
That dryness is a particular concern due to the amount of debris left in Helene’s wake — another major risk factor for fire. The storm’s winds, which reached more than 100 miles per hour in some areas, wreaked havoc on millions of acres of forested land. In North Carolina alone, the state’s Forest Service estimates over 820,000 acres of timberland were damaged.
“When you have a catastrophic storm like [Helene], all of the stuff that was standing upright — your trees — they might be snapped off or blown over,” fire ecologist David Godwin told me. “All of a sudden, that material is now on the forest floor, and so you have a really tremendous rearrangement of the fuels and the vegetation within ecosystems that can change the dynamics of how fire behaves in those sites.”
Godwin is the director of the Southern Fire Exchange for the University of Florida, a program that connects wildland firefighters, prescribed burners, and natural resources managers across the Southeast with fire science and tools. He says the Southeast sees frequent, unplanned fires, but that active ecosystem management helps keep the fires that do spark from becoming conflagrations. But an increase like this in fallen or dead vegetation — what Godwin refers to as fire “fuel” — can take this risk to the next level, particularly as it dries out.
Godwin offered an example from another storm, 2018’s Hurricane Michael, which rapidly intensified before making landfall in Northern Florida and continuing inland, similar to Hurricane Helene. In its aftermath, there was a 10-fold increase in the amount of fuel on the ground, with 72 million tons of timber damaged in Florida. Three years later, the Bertha Swamp Road Fire filled the storm’s Florida footprint with flames, which consumed more than 30,000 acres filled with dried out forest fuel. One Florida official called the wildfire the “ghost” of Michael, nodding to the overlap of the impacted areas and speaking to the environmental threat the storm posed even years later.
Not only does this fuel increase the risk of fire, it changes the character of the fires that do ignite, Godwin said. Given ample ground fuel, flame lengths can grow longer, allowing them to burn higher into the canopy. That’s why people setting prescribed fires will take steps like raking leaf piles, which helps keep the fire intensity low.
These fires can also produce more smoke, Godwin said, which can mix with the mountainous fog in the region to deadly effect. According to the NIFC, mountainous areas incurred the most damage from Helene, not only due to downed vegetation, but also because of “washed out roads and trails” and “slope destabilization” from the winds and rain. If there is a fire in these areas, all these factors will also make it more challenging for firefighters to address it, the report adds.
In addition to the natural debris fire experts worry about, Helene caused extensive damage to the built environment, wrecking homes, businesses, and other infrastructure. Try imagining four-and-a-half football fields stacked 10 feet tall with debris — that’s what officials have removed so far just in Asheville, North Carolina. In Florida’s Treasure Island, there were piles 50 feet high of assorted scrap materials. Officials have warned that some common household items, such as the lithium-ion batteries used in e-bikes and electric vehicles, can be particularly flammable after exposure to floodwaters. They are also advising against burning debris as a means of managing it due to all the compounding risks.
Larry Pierson, deputy chief of the Swannanoa Fire Department in North Carolina, told Blueridge Public Radio that his department’s work has “grown exponentially since the storm.” While cooler, wetter winter weather could offer some relief, Scheuller said the area will likely see heightened fire behavior for years after the storm, particularly if the swings between particularly wet and particularly dry periods continue.
Part of the challenge moving forward, then, is to find ways to mitigate risk on this now-hazardous terrain. For homeowners, that might mean exercising caution when dealing with debris and considering wildfire risk as part of rebuilding plans, particularly in more wooded areas. On a larger forest management scale, this means prioritizing safe debris collection and finding ways to continue the practice of prescribed burns, which are utilized more in the Southeast than in any other U.S. region. Without focused mitigation efforts, Godwin told me the area’s overall fire outlook would be much different.
“We would have a really big wildfire issue,” he said, “perhaps even bigger than what we might see in parts of the West.”