You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Texas and California offered intriguing, opposing examples of what batteries can do for the grid.

While cold winters in the south and hot summers across the country are the most dramatic times for electricity usage — with air conditioners blasting as weary workers return home or inefficient electric heaters strain to keep toes warm from Chattanooga to El Paso before the sun is up — it may be early spring that gives us the most insight into the lower-emitting grid of the future.
In California, America’s longtime leader in clean energy deployment, the combination of mild temperatures and longer days means that solar power can do most of the heavy lifting. And in Texas — whose uniquely isolated, market-based and permissive grid is fast becoming the source of much of the country’s clean power growth — regulators allow the state’s vast fleet of natural gas power (and some coal) power plants to shut down for maintenance during the mild weather, giving renewables time to shine.
And not just renewables: Both Texas and California saw remarkable usage of batteries on the grid this week. If the whole country’s grid is ever going to be decarbonized, other grids will have to start looking at what's happening in America’s two largest states.
At 7:30 p.m. Central Time on Tuesday, with 20,000 megawatts of power unavailable due to planned outages of thermal power plants, batteries were providing 1.7 gigawatts of power to the Texas grid, slightly more than solar, while wind was providing 5.5 gigawatts. Four hours earlier, solar and wind combined for almost 25 gigawatts. Real-time prices Tuesday evening topped out at over $4,000 per megawatt hour, getting close to the $5,000 cap imposed after blackouts and price spikes of Winter Storm Uri in 2021.
“There was a substantial amount of physical capacity available still,” Connor Waldoch, co-founder of the electricity monitoring company Grid Status, told me, referring to generation that was capable of selling power to the grid but was being kept off in case of an emergency. “ERCOT,” the organization that governs the Texas grid, “has been operating conservatively for the last few years,” he said. Temperatures were also high late in the day, with temperatures in the 80s in the evening parts of Texas, leading ERCOT to ask some plants to delay their scheduled maintenance.
According to Grid Status, there was more battery storage on the Texas grid Tuesday than at any point since high temperatures tested its stability last September. That combined with high prices in the real-time energy market meant a huge payday for battery storage operators. When there are more planned outages for natural gas, Waldoch explained, batteries are bidding “at the very tippity top” and likely earning huge revenues in just a few a hours.
But all those batteries are not necessarily helping decarbonize Texas’ electricity system by charging when there’s a lot of cheap solar and discharging when renewables are scarce and prices are high.
That’s because battery systems in Texas make the lion’s share of their revenues by providing what’s known in Texas as “ancillary services.” ERCOT pays battery operators to be available if the grid needs power quickly — and then they get paid again for the power they provide when called upon.
The spike in prices and battery operators' response be a sign that the battery market is maturing. In 2023, according to the battery storage data service Modo Energy, Texas battery operators earned around 85% of their revenue from providing ancillary services. For battery developers, earning money this way is ideal because it means less wear and tear on battery systems as they charge and discharge.
That said, the portion of revenue that battery systems earn from selling actual energy almost tripled from 2022 to 2023; Brandt Vermillion, Modo’s ERCOT lead, estimated that installed battery capacity would double in ERCOT in 2024, while the amount of ancillary services would stay “more or less fixed.” As the supply of battery capacity gets closer to and possibly exceeds demand for ancillary services, those prices will fall, Vermillion said. Over time, “energy arbitrage” — charging when prices are low and discharging when prices are high — will become a more and more attractive way to earn revenue.
To get a sense of what that will look like, Texas battery storage operators should look west.
In California this week, conditions were more, well, pacific. At 8 p.m. Pacific Time on Tuesday night, there were around 6 gigawatts of battery storage discharging onto the grid, more than the 5 gigawatts of natural gas or the 4.5 gigawatts of hydro power at the time. Batteries were the largest source of power on the grid.
This was a signal moment for California, which has been procuring and deploying grid batteries at a breakneck pace, and even retooled its residential solar program to encourage home battery storage. California’s grid has over 7 gigawatts of installed battery storage, according to the Energy Information Administration, the most of any state, while Texas, in second place, has just over 3 gigawatts. (There are another 300 utility-scale battery projects in the pipeline for 2024, according to the EIA, with about half of them planned for Texas.)
In California, the so-called “saturation” of ancillary services by batteries is far more advanced, and the portion of revenues earned by battery systems by providing them has decreased.
“Ancillary services have gone from taking up the majority of battery capacity to only a small fraction,” according to a report by the California Independent System Operator. By the end of 2022, the majority of battery revenue came from the energy markets, not ancillary services, the report said.
Thanks to the magnitude of solar in California, Grid Status’ Waldoch explained, “almost every day there’s a long negative- or low-price period” — an ideal time for carbon-abating energy arbitrage.
Batteries that are most carbon-abating tend to power themselves when transmission is congested, which essentially “strands” renewables on the grid, or when they would otherwise be curtailed, when there’s too much renewable power available compared to demand, explained Emma Konet, co-founder of Tierra Climate, which is working to set up a voluntary carbon market to encourage carbon-abating battery usage. When the company examined Texas’ battery market in 2022, it found that only about a fifth of batteries were actually abating carbon.
In fact, the most carbon-intensive battery system in Texas that Tierra Climate looked at was also its most profitable, making the lion’s share of its revenue in the ancillary services markets; the most carbon-abating didn’t participate in the ancillary services markets at all, and was paired directly with a solar project.
Texas's energy market is simply not structured in a way such that there's a good correlation between low prices and low emissions for charging and high prices and high emissions when batteries discharge, Konet told me. (The best way to align batteries with lower emissions, she added, would be a carbon tax of at least $50 a ton.) While Tierra Climate hasn’t looked in detail at California, Konet said California’s battery systems are more likely to be carbon-abating because of the prevalence of storage projects paired with renewable generation.
There’s probably no worse way to encourage Texas to do something than by pointing to California as a positive example. Still, if Texas’ battery storage industry is ever going to turn into something more than an adjuster pedal for its existing grid mix, it’s going to have to get a little more Left Coast — or at least move a little closer to those solar panels.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.
The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.
But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.
This weekend, some 200 million Americans will be cranking up the thermostats in their natural-gas-heated homes, firing up their propane generators, or hitting icy roads in their combustion-engine cars as a major winter storm brings record-low temperatures to 35 states, knocks out power, and grinds air travel to a halt.
Climate change deniers love to use major winter storms as “proof” that global warming isn’t real. But in the case of this weekend’s polar vortex, there is evidence that Arctic warming is responsible for the record cold temperature projections across the United States.
“In the Arctic, in the winter, the ocean is much, much warmer than the atmosphere,” Judah Cohen, a climatologist at MIT and the author of a 2021 paper linking Arctic variability to extreme weather in the U.S., told me. Sea ice acts as an insulating layer separating the warmer ocean water from the frigid air. But as it melts — as it is doing every month of the year — “all of this heat can now be extracted out of the ocean.” The reduced temperature difference between the ocean and atmosphere creates wavy high-pressure ridges and low-pressure troughs that are favorable to the formation of polar vortices, which can funnel extreme cold air down over North America, as they seemingly did over Texas in 2021’s Winter Storm Uri, when 246 people died.
The exact mechanisms and interactions of this phenomenon are still up for debate. “I am in the minority that argues that there is causal link between a warm Arctic and cold continents,” Cohen added to me via email. “Most others argue that it is a coincidental relationship.” Still, scientists generally agree that extreme cold events will persist in a warming world; they’ll just become rarer.
Cold kills more people in the United States than heat, but curiously, warmer winters aren’t likely to significantly reduce these seasonal deaths. That’s because about half of the cases of excess mortality in winter are from cardiovascular diseases, which are, by nature, “highly seasonal,” Kristie Ebi, a professor of global health at the University of Washington, told me. “Since people began studying these, there are more of them in the winter than there are in the summer.” Researchers still aren’t sure why that is — though since the 1940s, we’ve known that people’s blood pressure, cholesterol, and even blood viscosity go up during the colder and darker months, perhaps due to changes in diet or exercise. That also appears to be the case regardless of climate or temperature, holding true whether you’re in Yellowknife or Miami.
In other words, “if seasonal factors other than temperature are mainly responsible for winter excess mortality, then climate warming might have little benefit,” Patrick Kinney, the director of Columbia University’s Climate and Health Program, wrote in Environmental Research Letters back in 2015. Extreme heat-related deaths, by contrast, have no ceiling, meaning global warming will result in more temperature-related deaths than it will prevent.
Our anthropogenically warmer winters could even prove to be more deadly in certain ways. Dana Tobin is a researcher at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder who studies how weather affects traffic accidents. She’s found that driving in freezing rain is more dangerous than driving in snow “because of the ice glaze that it can produce on surfaces, especially those that are untreated,” she told me. As winters become warmer, there will, counterintuitively, be more ice on roads in many places, since freezing rain requires a bit of warm air before it hits the ground and becomes black ice.
Researchers working in Scandinavia have similarly found that as the atmosphere warms and more days hover around freezing, “there is a higher risk of icy conditions … which may lead to a predisposition to falls and road traffic accidents.” (As I’ve previously reported, milder winters might also make us even more depressed than very cold ones.)
There is something slightly karmic about the fact that cars become increasingly unsafe as the planet, warmed by their emissions, becomes more hazardous. But this connection gets even bleaker when carbon monoxide poisoning is factored in.
On Thursday, the North American Electric Reliability Corporation issued a statement warning that “much of North America is at an elevated risk of having insufficient energy supplies to meet demand in extreme operating conditions,” including “advancing winter weatherization of power plants and fuel acquisition to enable operations during cold temperatures.” Heavy ice can also snap branches above power lines, causing local outages.
When the power goes out or the gas lines freeze, desperate people will do anything to stay warm. That includes, in tragic cases, running improperly vented generators or plugging in propane heaters indoors, which can produce odorless and colorless CO — instead of the usual water and carbon dioxide — when fossil fuels don’t burn correctly. Accidental carbon monoxide poisoning is on the rise in the United States due to the proliferation of such appliances amid increasingly frequent extreme weather events, jumping 86% between 2012 and 2022. That’s even as, worldwide, carbon monoxide poisoning is decreasing.
Snow and ice are among the most dangerous weather conditions in the U.S., and people should take warnings of “life-threatening conditions” at face value. Tobin, the traffic researcher, stressed that one of the best protections from winter weather hazards is knowledge alone. “I believe the best thing that we can do when it comes to messaging to protect drivers from hazards is to empower motorists to make educated and informed decisions for their own safety and the safety of others,” she told me.
Winter storms highlight the entangled nature of our dependence on fossil fuels. We can’t separate extreme weather events from the energy required to survive them. But the dark irony is that, as the planet becomes more volatile, the most dangerous fossil fuels might be the ones meant to keep us warm and get us back home.
The cloak-and-dagger approach is turning the business into a bogeyman.
It’s time to call it like it is: Many data center developers seem to be moving too fast to build trust in the communities where they’re siting projects.
One of the chief complaints raised by data center opponents across the country is that companies aren’t transparent about their plans, which often becomes the original sin that makes winning debates over energy or water use near-impossible. In too many cases, towns and cities neighboring a proposed data center won’t know who will wind up using the project, either because a tech giant is behind it and keeping plans secret or a real estate firm refuses to disclose to them which company it’ll be sold to.
Making matters worse, developers large and small are requiring city and county officials to be tight-lipped through non-disclosure agreements. It’s safe to say these secrecy contracts betray a basic sense of public transparency Americans expect from their elected representatives and they become a core problem that lets activists critical of the data center boom fill in gaps for the public. I mean, why trust facts and figures about energy and water if the corporations won’t be up front about their plans?
“When a developer comes in and there’s going to be a project that has a huge impact on a community and the environment – a place they call home – and you’re not getting any kind of answers, you can tell they’re not being transparent with you,” Ginny Marcille-Kerslake, an organizer for Food and Water Watch in Pennsylvania, told me in an interview this week. “There’s an automatic lack of trust there. And then that extends to their own government.”
Let’s break down an example Marcille-Kerslake pointed me to, where the utility Talen Energy is seeking to rezone hundreds of acres of agricultural land in Montour County, Pennsylvania, for industrial facilities. Montour County is already a high risk area for any kind of energy or data center development, ranking in the 86th percentile nationally for withdrawn renewable energy projects (more than 10 solar facilities have been canceled here for various reasons). So it didn’t help when individuals living in the area began questioning if this was for Amazon Web Services, similar to other nearby Talen-powered data center projects in the area?
Officials wouldn’t – or couldn’t – say if the project was for Amazon, in part because one of the county commissioners signed a non-disclosure agreement binding them to silence. Subsequently, a Facebook video from an activist fighting the rezoning went viral, using emails he claimed were obtained through public records requests to declare Amazon “is likely behind the scenes” of the zoning request.
Amazon did not respond to my requests for comment. But this is a very familiar pattern to us now. Heatmap Pro data shows that a lack of transparency consistently ranks in the top five concerns people raise when they oppose data center projects, regardless of whether they are approved or canceled. Heatmap researcher Charlie Clynes explained to me that the issue routinely crops up in the myriad projects he’s tracked, down to the first data center ever logged into the platform – a $100 million proposal by a startup in Hood County, Oregon, that was pulled after a community uproar.
“At a high level, I have seen a lack of transparency become more of an issue.t makes people angry in a very unique way that other issues don’t. Not only will they think a project is going to be bad for a community, but you’re not even telling them, the key stakeholder, what is going on,” Clynes said. “It’s not a matter of, are data centers good or bad necessarily, but whether people feel like they’re being heard and considered. And transparency issues make that much more difficult..”
My interview with Marcille-Kerslake exemplified this situation. Her organization is opposed to the current rapid pace of data center build-out and is supporting opposition in various localities. When we spoke, her arguments felt archetypal and representative of how easily those who fight projects can turn secrecy into a cudgel. After addressing the trust issues with me, she immediately pivoted to saying that those exist because “at the root of it, this lack of transparency to the community” comes from “the fact that what they have planned, people don’t want.”
“The answer isn’t for these developers to come in and be fully transparent in what they want to do, which is what you’d see with other kinds of developments in your community. That doesn’t help them because what they’re building is not wanted.”
I’m not entirely convinced by her point, that the only reason data center developers are staying quiet is because of a likelihood of community opposition. In fairness, the tech sector has long operated with a “move fast, break things” approach, and Silicon Valley companies long worked in privacy in order to closely guard trade secrets in a competitive marketplace. I also know from my previous reporting that before AI, data center developers were simply focused on building projects with easy access to cheap energy.
However, in fairness to opponents, I’m also not convinced the industry is adequately addressing its trust deficit with the public. Last week, I asked Data Center Coalition vice president of state policy Dan Diorio if there was a set of “best practices” that his large data center trade organization is pointing to for community relations and transparency. His answer? People are certainly trying their best as they move quickly to build out infrastructure for AI, but no, there is no standard for such a thing.
“Each developer is different. Each company is different. There’s different sizes, different structures,” he said. “There’s common themes of open and public meetings, sharing information about water use in particular, helping put it in the proper context as well.”
He added: “I wouldn’t categorize that as industry best practice, [but] I think you’re seeing common themes emerge in developments around the country.”
Plus more of the week’s biggest renewable energy fights.
Cole County, Missouri – The Show Me State may be on the precipice of enacting the first state-wide solar moratorium.
Clark County, Ohio – This county has now voted to oppose Invenergy’s Sloopy Solar facility, passing a resolution of disapproval that usually has at least some influence over state regulator decision-making.
Millard County, Utah – Here we have a case of folks upset about solar projects specifically tied to large data centers.
Orange County, California – Compass Energy’s large battery project in San Juan Capistrano has finally died after a yearslong bout with local opposition.
Hillsdale County, Michigan – Here’s a new one: Two county commissioners here are stepping back from any decision on a solar project because they have signed agreements with the developer.