You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Carbon removal would seem to have a pretty clear definition. It’s the reverse of carbon emissions. It means taking carbon out of the atmosphere and putting it somewhere else — underground, into products, into the ocean — where it won’t warm the planet. But a new kind of carbon removal project shows how this formula can conceal consequential differences between approaches.
A few months ago, Puro.earth, a carbon removal registry, certified a small ethanol refinery in North Dakota to sell carbon removal credits — the first ethanol plant to earn this privilege. Red Trail Energy, which owns the facility, captures the CO2 released from the plant when corn is fermented into ethanol, and injects it into a porous section of rock more than 6,000 feet underground. Since Red Trail started doing this in June of 2022, it’s prevented some 300,000 metric tons of CO2 from entering the atmosphere, according to data published by the North Dakota Department of Mineral Resources.
There are two ways to look at what’s happening here.
If you just follow the carbon, it started in the atmosphere and ended up underground. In between, the corn sucked up carbon through photosynthesis; when it was processed into ethanol, about a third of that carbon went into the fuel, a third was left behind as dried grain, and the remainder was captured as it wafted out of the fermentation tank and stashed underground. “That is, in a broad sense, how that looks like carbon removal,” Daniel Sanchez, an assistant professor at the University of California, Berkeley who studies biomass carbon removal, told me.
But if you zoom out, the picture changes. For the carbon to get from the atmosphere to the ground, a few other things had to happen. The corn had to be grown, harvested, and transported in trucks to the plant. It had to be put through a mill, cooked, and then liquified using heat from a natural gas boiler. And this was all in service, first and foremost, of producing ethanol to be burned, ultimately, in a car engine. If you account for the CO2 emitted during these other steps, the process as a whole is putting more into the atmosphere than it’s taking out.
So, is Red Trail Energy really doing carbon removal?
Puro.earth takes the first view — the registry’s rules essentially draw a box around the carbon capture and storage, or CCS, part of the process. Red Trail has to count the emissions from the energy it took to capture and liquify and inject the carbon, but not from anything else that happened before that. So far, Puro has issued just over 157,000 carbon removal credits for Red Trail to sell.
This is, essentially, industry consensus. Other carbon market registries including Gold Standard, Verra, and Isometric more or less take the same approach for any projects involving biomass, though they haven’t certified any ethanol projects yet. (Isometric’s current rules disqualify ethanol plants because they only allow projects that use waste biomass.)
But the nonprofit CarbonPlan, a watchdog for the carbon removal industry, argues that it’s a mistake to call this carbon removal. In a blog post published in December, program lead Freya Chay wrote that because the carbon storage is “contingent upon the continued production of ethanol,” it’s wrong to separate the two processes. The project reduces the facility’s overall emissions, Chay argued, but it’s not “carbon removal.”
This debate may sound semantic, and to some extent, it is. As long as an action results in less pollution warming the planet, does it matter whether we label it “carbon removal” or “emission reduction”?
The point of carbon credits is that they are paying for an intervention that wouldn’t have happened otherwise. “You have to look at, what part of the project is being built because they receive carbon removal credits?” Marianne Tikkanen, the co-founder and head of standard at Puro told me. “In this case, it was the capture part.” Previously, the emissions from the fermentation tank were considered to be zero, since the carbon started in the atmosphere and ended up back in the atmosphere. If you just look at the change that the sale of credits supported, those emissions are now negative.
But the logic of carbon credits may not be totally aligned with the point of carbon removal. Scientists generally see three roles for technologies that remove carbon from the atmosphere. The first is to reduce net emissions in the near term — Red Trail’s project checks that box. In the medium term, carbon removal can counteract any remaining emissions that we don’t know how to eliminate. That’s how we’ll “achieve net-zero” and stop the planet from warming.
But those who say these labels really matter are thinking of the third role. In the distant future, if we achieve net-zero emissions, but global average temperatures have reached dangerous heights, doing additional carbon removal — and lowering the total concentration of CO2 in the atmosphere — will be our only hope of cooling the planet. If this is the long term goal, there is a “clear conceptual problem” with calling a holistic process that emits more than it removes “carbon removal,” Chay told me.
“I think the point of definitions is to help us navigate the world,” she said. “It will be kind of a miracle if we get there, but that is the lighthouse.”
Red Trail may have been the first ethanol company to get certified to sell carbon removal credits, but others are looking to follow in its footsteps. Chay’s blog post, written in December, was responding to news of another project: Summit Carbon Solutions, a company trying to build a major pipeline through the midwest that will transport CO2 captured from ethanol refineries and deliver it to an underground well in North Dakota, announced a deal to pre-sell $30 million worth of carbon removal credits from the project; it plans to certify the credits through Gold Standard. In May, Summit announced it planned to sell more than 160 million tons of carbon removal credits over the next decade.
Decarbonization experts often refer to the emissions from ethanol plants as low-hanging fruit. Out of all the polluting industries that we could be capturing carbon from, ethanol is one of the easiest. The CO2 released when corn sugar is fermented is nearly 100% pure, whereas the CO2 that comes from fossil fuel combustion is filled with all kinds of chemicals that need to be scrubbed out first.
Even if it’s relatively easy, though, it’s not free, and the ethanol industry has historically ignored the opportunity. But in the past few years, federal tax credits and carbon markets have made the idea more attractive.
Red Trail’s CCS project has been a long time in the making. The company began looking into CCS in 2016, partnering with the Energy and Environmental Research Center, the North Dakota Industrial Commission Renewable Energy Council, and the U.S. Department of Energy on a five-year feasibility study. Jodi Johnson, Red Trail’s CEO, answered questions about the project by email. “Building a first-of-its-kind CCS project involved significant financial, technical, and regulatory risks,” she told me. “The technology, while promising, required substantial upfront investment and a commitment to navigating uncharted regulatory frameworks.”
The primary motivation for the project was the company’s “commitment to environmental stewardship and sustainability,” Johnson said, but low-carbon fuel markets in California and Oregon were also a “strategic incentive.” Ethanol companies that sell into those states earn carbon credits based on how much cleaner their fuel is than gasoline. They can sell those credits to dirtier-fuel makers who need to comply with state laws. The carbon capture project would enable Red Trail to earn more credits — a revenue stream that at first, looked good enough to justify the cost. A 2017 economic assessment of the project found that it “may be economically viable,” depending on the specific requirements in the two states.
But today, two years after Red Trail began capturing carbon, the company’s application to participate in California’s low-carbon fuel market is still pending. Though the company does sell some ethanol into the Oregon market, it decided to try and sell carbon removal credits through Puro to support “broader decarbonization and sequestration efforts while awaiting regulatory approvals,” Johnson said. Red Trail had already built its carbon capture system prior to working with Puro, but it may not have operated the equipment unless it had an incentive to do so.
Puro didn’t just take Red Trail’s word for it. The project underwent a “financial additionality test” including an evaluation of other incentives for Red Trail to sequester carbon. For example, the company can earn up to $50 in tax credits for each ton of CO2 it puts underground. (The Inflation Reduction Act increased this subsidy to $85 per ton, but Red Trail is not eligible for the higher amount because it started building the project before the law went into effect.) In theory, this tax credit alone could be enough to finance the project. A recent report from the Energy Futures Initiative concluded that a first-of-a-kind CCS project at an ethanol plant should cost between $36 and $41 per ton of CO2 captured and stored.
Johnson told me Red Trail does not pay income tax at the corporate level, however — it is taxed as a partnership. That means individual investors can take advantage of the credit, but it’s not a big enough benefit to secure project finance. The project “requires significant capital expenditure, operating expense, regulatory, and long-term monitoring for compliance,” she said. “Access to the carbon market was the needed incentive to secure the investment and the continuous project operation.”
Ultimately, after an independent audit of Red Trail’s claims, Puro concluded that the company did, in fact, need to sell carbon removal credits to justify operating the CCS project. (Red Trail is currently also earning carbon credits for fuel sold in Oregon, but Puro is accounting for these and deducting credits from its registry accordingly.)
All this helps make the case that it’s reasonable to support projects like Red Trail’s through the sale of carbon credits. But it doesn’t explain why we should call it carbon removal.
When I put the question to Tikkanen, she said that the project interrupts the “short cycle” of carbon: The CO2 is captured during photosynthesis, it’s transferred into food or fuel, and then it’s released back into the air in a continuous loop — all in a matter of months. Red Trail is turning that loop into a one-way street from the atmosphere to the ground, taking more and more carbon out of the air over time. That’s different from capturing carbon at a fossil fuel plant, where the carbon in question had previously been trapped underground for millennia.
Robert Hoglund, a carbon removal advisor who co-founded the database CDR.fyi, had a similar explanation. He told me that it didn’t make sense to categorize this project as “reducing emissions” from the plant because the fossil fuel-burning trucks that deliver the corn and the natural gas boilers cooking it are still releasing the same amount of carbon into the atmosphere. “If we say only processes that, if they're scaled up, lead to lower emissions in the atmosphere are carbon removal, that's looking at it from a system perspective,” he said. “I can understand where they come from, but I think it does add some confusion.”
Red Trail Energy and Summit Carbon Solutions defended the label, noting that this is the way carbon market registries have decided to treat biomass-based carbon sequestration projects. “The fact that emissions remain from the lifecycle of the corn itself is not the focus of the removal activity,” Johnson told me. “The biogenic CO2 is clearly removed from the atmosphere permanently.”
Sanchez, the Berkeley professor, argued that Puro’s rules are adequate because there’s a path for ethanol plants to eventually achieve net-negative emissions. They will have to capture emissions from the boiler, in addition to the fermentation process, and make a few other tweaks, like using renewable natural gas, according to a recent peer-reviewed study Sanchez authored. “That's not what's happening here,” he told me, “but I view that as indicative that this is part of the basket of technologies that we use to reach net-zero and to suck CO2 out of the air.”
(Red Trail is working on reducing its emissions even more, Johnson told me. The company is finishing engineering on a new combined heat and power system that will improve efficiency at the plant.)
In addition to teaching at Berkeley, Sanchez is a principal scientist for the firm Carbon Direct, which helps corporate buyers find “high quality” carbon removal credits. He added that he felt the project was “worthy" of the dollars companies are designating for carbon removal because of the risk it involved, and the fact that it would blaze a trail for others to follow. Ethanol CCS projects will help build up carbon storage infrastructure and expertise, enabling other carbon removal projects in the future.
Though there is seeming consensus among carbon market participants that this is carbon removal, scientists outside the industry are more skeptical. Katherine Maher, an Earth systems scientist who studies the carbon cycle at Stanford University, said she understood the argument for calling ethanol with CCS carbon removal, but she also couldn’t ignore the fact that capturing the carbon requires energy to grow the corn, transport it, and so on. “You really need to be conscious about, what are the other emissions in the project, and are those being accounted for in the calculation of the CO2 removed?”
Carbon180, a nonprofit that advocates for carbon removal policy, shares that perspective. “When it comes to ethanol with CCS, we want to see the actual net negativity,” Sifang Chen, the group’s managing science and innovation advisor, told me.
In the U.S. Department of Energy’s Road to Removals report, a 221-page document that highlights all of the opportunities for carbon removal in the United States, the agency specifically chose not to analyze ethanol with CCS “due largely to its inability to achieve a negative [carbon intensity] without substantial retrofitting of existing corn-ethanol facilities.”
It’s possible to say that both views are correct. Each follows a clear logic — one more rooted in creating practical rules for a market in order to drive innovation, the other in the uncompromising math of atmospheric science.
At times throughout writing this, I wondered if I was making something out of nothing. But the debate has significance beyond ethanol. Sanchez pointed out to me that you could ask the same question about any so-called carbon removal process that’s tied to an existing industry. Take enhanced rock weathering, for example, which involves crushing up special kinds of rocks that are especially good at absorbing carbon from the air. A lot of the companies trying to do this get their rocks from mining waste, but they don’t include all the emissions from mining in their carbon removal calculation.
Similarly, Summit Carbon Solutions noted that CarbonPlan supports claims of carbon removal by Charm Industrial, a company that takes the biomass left behind in corn fields, turns it into oil, and sequesters the oil underground. In that case, the company is not counting emissions from corn production or the downstream uses of corn.
Chay admitted that she didn’t have a great answer for why she drew the boundaries differently for one versus the other. “We don’t claim to have all the answers, and this back-and-forth illustrates just how much ambiguity there is and why it’s important to work through these issues,” she told me in an email. But she suggested that one point of comparison is to look at how dependent the carbon removal activity is on “the ongoing operation of a net emitting industry, and how one thinks about the role of that emitting industry in a net-zero world.” There is no apparent version of the future where we no longer have mining as an industry, or no longer grow corn for food. But there is a path to eliminating the use of ethanol by electrifying transportation.
It’s worth mentioning that this niche debate about carbon removal is taking place within a much larger and longer controversy about whether ethanol belongs in a low-carbon future at all.
Red Trail told me the company sees the adoption of electric vehicles as an opportunity to diversify into making fuels for aviation and heavy-duty transportation, which are more difficult to electrify. But some environmental groups, like the World Resources Institute, argue that a more sustainable approach would be to develop synthetic fuels from captured carbon and hydrogen. I should note that experts from both sides of this debate told me that carbon credit sales should not justify keeping an ethanol plant open or building a new one if the economics of the fuel don’t work on their own.
In Chay’s blog post, she presented real stakes for this rhetorical debate. If we call net-emitting processes carbon removal, we could develop an inflated sense of how much progress we’ve made toward our overall capacity to remove carbon from the atmosphere, which in turn could warp perceptions of how quickly we need to reduce emissions.
Peter Minor, the former director of science and innovation at Carbon180 who is starting a company focused on measurement and verification, raised the same concern. “When the definition of what it means to remove a ton of CO2 from the air is subjective, what happens is you get a bunch of projects that might have quite different climate impacts,” he told me. “And you may or may not realize it until after the fact.”
There’s also a risk of diverting funding that could go toward scaling up more challenging, more expensive, but truly net-negative solutions such as direct air capture. This risk is compounded by the growing pressure on carbon market players like Puro and Carbon Direct to identify new, more affordable carbon removal projects. Over the past several years, influential groups like the Science Based Targets initiative and corporate sustainability thought leaders like Stripe and Microsoft have decided that old-school carbon credits — the cheaper so-called “offsets” that represent emissions reductions — are not good enough. Now companies are expected to buy carbon removal credits to fulfill their climate promises to customers, lest they be accused of greenwashing.
As a result, the industry has backed itself into a corner, Minor told me. “We have come out as a society and said, the only thing that is worth it, the only thing that is allowed to be used is carbon removal,” he said. “So if that's the only thing with economics behind it, then yeah, like, magic! Everything is now all of a sudden carbon removal! Who would have predicted that this could have happened?”
The success of carbon removal depends, ultimately, on integrity — the industry’s favorite word these days. From the companies trying to remove carbon, to the carbon credit registries validating those efforts, to the nonprofits, brokers, and buyers that want to see the market scale, everyone is talking about developing transparent and trustworthy processes for measuring how much carbon is removed from the atmosphere by a given intervention. But how good is good measurement if experts don’t agree on what should be measured?
“There hasn't been a way to standardize the climate impacts that are being promised,” said Minor. “And so I think unless we solve that problem, I just don't see how we're going to build the trust we need, to create the economics that we need and justify an industry that can’t really exist outside of the millions or billions of tons scale.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Microsoft dominated this year.
It’s been a quiet year for carbon dioxide removal, the nascent industry trying to lower the concentration of carbon already trapped in the atmosphere.
After a stretch as the hottest thing in climate tech, the CDR hype cycle has died down. 2025 saw fewer investments and fewer big projects or new companies announced.
This story isn’t immediately apparent if you look at the sales data for carbon removal credits, which paints 2025 as a year of breakout growth. CDR companies sold nearly 30 million tons of carbon removal, according to the leading industry database, CDR.fyi — more than three times the amount sold in 2024. But that topline number hides a more troubling reality — about 90% of those credits were bought by a single company: Microsoft.
If you exclude Microsoft, the total volume of carbon removal purchased this year actually declined by about 100,000 tons. This buyer concentration is the continuation of a trend CDR.fyi observed in its 2024 Year In Review report, although non-Microsoft sales had grown a bit that year compared to 2023.
Trump’s crusade against climate action has likely played a role in the market stasis of this year. Under the Biden administration, federal investment in carbon removal research, development, and deployment grew to new heights. Biden’s Securities and Exchange Commission was also getting ready to require large companies to disclose their greenhouse gas emissions and climate targets, a move that many expected to increase demand for carbon credits. But Trump’s SEC scrapped the rule, and his agency heads have canceled most of the planned investments. (At the time of publication, the two direct air capture projects that Biden’s Department of Energy selected to receive up to $1.2 billion have not yet had their contracts officially terminated, despite both showing up on a leaked list of DOE grant cancellations in October.)
Trump’s overall posture on climate change reduced pressure on companies to act, which probably contributed to there being fewer new buyers entering the carbon removal market, Robert Hoglund, a carbon removal advisor who co-founded CDR.fyi, told me. “I heard several companies say that, yeah, we wouldn't have been able to do this commitment this year. We're glad that we made it several years ago,” he told me.
Kyle Harrison, a carbon markets analyst at BloombergNEF, told me he didn’t view Microsoft’s dominance in the market as a bad sign. In the early days of corporate wind and solar energy contracts, he said, Microsoft, Google, and Amazon were the only ones signing deals, which raised similar questions about the sustainability of the market. “But what it did is it created a blueprint for how you sign these deals and make these nascent technologies more financeable, and then it brings down the cost, and then all of a sudden, you start to get a second generation of companies that start to sign these deals.”
Harrison expects the market to see slower growth in the coming years until either carbon removal companies are able to bring down costs or a more reliable regulatory signal puts pressure on buyers.
Governments in Europe and the United Kingdom introduced a few weak-ish signals this year. The European Union continued to advance a government certification program for carbon removal and expects to finalize methodologies for several CDR methods in 2026. That government stamp of approval may give potential buyers more confidence in the market.
The EU also announced plans to set up a carbon removal “buyers’ club” next year to spur more demand for CDR by pooling and coordinating procurement, although the proposal is light on detail. There were similar developments in the United Kingdom, which announced a new “contract for differences” policy through which the government would finance early-stage direct air capture and bioenergy with carbon capture projects.
A stronger signal, though, could eventually come from places with mandatory emissions cap and trade policies, such as California, Japan, China, the European Union, or the United Kingdom. California already allows companies to use carbon removal credits for compliance with its cap and invest program. The U.K. plans to begin integrating CDR into its scheme in 2029, and the EU and Japan are considering when and how to do the same.
Giana Amador, the executive director of the U.S.-based Carbon Removal Alliance, told me these demand pulls were extremely important. “It tells investors, if you invest in this today, in 10 years, companies will be able to access those markets,” she said.
At the same time, carbon removal companies are not going to be competitive in any of these markets until carbon trades at a substantially higher price, or until companies can make carbon removal less expensive. “We need to both figure out how we can drive down the cost of carbon removal and how to make these carbon removal solutions more effective, and really kind of hone the technology. Those are what is going to unlock demand in the future,” she said.
There’s certainly some progress being made on that front. This year saw more real-world deployments and field tests. Whereas a few years ago, the state of knowledge about various carbon removal methods was based on academic studies of modeling exercises or lab experiments, now there’s starting to be a lot more real-world data. “For me, that is the most important thing that we have seen — continued learning,” Hoglund said.
There’s also been a lot more international interest in the sector. “It feels like there’s this global competition building about what country will be the leader in the industry,” Ben Rubin, the executive director of the Carbon Business Council, told me.
There’s another somewhat deceptive trend in the year’s carbon removal data: The market also appeared to be highly concentrated within one carbon removal method — 75% of Microsoft’s purchases, and 70% of the total sales tracked by CDR.fyi, were credits for bioenergy with carbon capture, where biomass is burned for energy and the resulting emissions are captured and stored. Despite making up the largest volume of credits, however, these were actually just a rare few deals. “It’s the least common method,” Hoglund said.
Companies reported delivering about 450,000 tons of carbon removal this year, according to CDR.fyi’s data, bringing the cumulative total to over 1 million tons to date. Some 80% of the total came from biochar projects, but the remaining deliveries run the gamut of carbon removal methods, including ocean-based techniques and enhanced rock weathering.
Amador predicted that in the near-term, we may see increased buying from the tech sector, as the growth of artificial intelligence and power-hungry data centers sets those companies’ further back on their climate commitments. She’s also optimistic about a growing trend of exploring “industrial integrations” — basically incorporating carbon removal into existing industrial processes such as municipal waste management, agricultural operations, wastewater treatment, mining, and pulp and paper factories. “I think that's something that we'll see a spotlight on next year,” she said.
Another place that may help unlock demand is the Science Based Targets initiative, a nonprofit that develops voluntary standards for corporate climate action. The group has been in the process of revising its Net-Zero Standard, which will give companies more direction about what role carbon removal should play in their sustainability strategies.
The question is whether any of these policy developments will come soon enough or be significant enough to sustain this capital-intensive, immature industry long enough for it to prove its utility. Investment in the industry has been predicated on the idea that demand for carbon removal will grow, Hoglund told me. If growth continues at the pace we saw this year, it’s going to get a lot harder for startups to raise their series B or C.
“When you can't raise that, and you haven't sold enough to keep yourself afloat, then you go out of business,” he said. “I would expect quite a few companies to go out of business in 2026.”
Hoglund was quick to qualify his dire prediction, however, adding that these were normal growing pains for any industry and shouldn’t be viewed as a sign of failure. “It could be interpreted that way, and the vibe may shift, especially if you see a lot of the prolific companies come down,” he said. “But it’s natural. I think that’s something we should be prepared for and not panic about.”
America runs on natural gas.
That’s not an exaggeration. Almost half of home heating is done with natural gas, and around 40% — the plurality — of our electricity is generated with natural gas. Data center developers are pouring billions into natural gas power plants built on-site to feed their need for computational power. In its -260 degree Fahrenheit liquid form, the gas has attracted tens of billions of dollars in investments to export it abroad.
The energy and climate landscape in the United States going into 2026 — and for a long time afterward — will be largely determined by the forces pushing and pulling on natural gas. Those could lead to higher or more volatile prices for electricity and home heating, and even possibly to structural changes in the electricity market.
But first, the weather.
“Heating demand is still the main way gas is used in the U.S.,” longtime natural gas analyst Amber McCullagh explained to me. That makes cold weather — experienced and expected — the main driver of natural gas prices, even with new price pressures from electricity demand.
New sources of demand don’t help, however. While estimates for data center construction are highly speculative, East Daily Analytics figures cited by trade publication Natural Gas Intel puts a ballpark figure of new data center gas demand at 2.5 billion cubic feet per day by the end of next year, compared to 0.8 billion cubic feet per day for the end of this year. By 2030, new demand from data centers could add up to over 6 billion cubic feet per day of natural gas demand, East Daley Analytics projects. That’s roughly in line with the total annual gas production of the Eagle Ford Shale in southwest Texas.
Then there are exports. The U.S. Energy Information Administration expects outbound liquified natural gas shipments to rise to 14.9 billion cubic feet per day this year, and to 16.3 billion cubic feet in 2026. In 2024, by contrast, exports were just under 12 billion cubic feet per day.
“Even as we’ve added demand for data centers, we’re getting close to 20 billion per day of LNG exports,” McCullagh said, putting more pressure on natural gas prices.
That’s had a predictable effect on domestic gas prices. Already, the Henry Hub natural gas benchmark price has risen to above $5 per million British thermal units earlier this month before falling to $3.90, compared to under $3.50 at the end of last year. By contrast, LNG export prices, according to the most recent EIA data, are at around $7 per million BTUs.
This yawning gap between benchmark domestic prices and export prices is precisely why so many billions of dollars are being poured into LNG export capacity — and why some have long been wary of it, including Democratic politicians in the Northeast, which is chronically short of natural gas due to insufficient pipeline infrastructure. A group of progressive Democrats in Congress wrote a letter to Secretary of Energy Chris Wright earlier this year opposing additional licenses for LNG exports, arguing that “LNG exports lead to higher energy prices for both American families and businesses.”
Industry observers agree — or at least agree that LNG exports are likely to pull up domestic prices. “Henry Hub is clearly bullish right now until U.S. gas production catches up,” Ira Joseph, a senior research associate at the Center for Global Energy Policy at Columbia University, told me. “We’re definitely heading towards convergence” between domestic and global natural gas prices.
But while higher natural gas prices may seem like an obvious boon to renewables, the actual effect may be more ambiguous. The EIA expects the Henry Hub benchmark to average $4 per million BTUs for 2026. That’s nothing like the $9 the benchmark hit in August 2022, the result of post-COVID economic restart, supply tightness, and the Russian invasion of Ukraine.
Still, a tighter natural gas market could mean a more volatile electricity and energy sector in 2026. The United States is basically unique globally in having both large-scale domestic production of coal and natural gas that allows its electricity generation to switch between them. When natural gas prices go up, coal burning becomes more economically attractive.
Add to that, the EIA forecasts that electricity generation will have grown 2.4% by the end of 2025, and will grow another 1.7% in 2026, “in contrast to relatively flat generation from 2010 to 2020. That is “primarily driven by increasing demand from large customers, including data centers,” the agency says.
This is the load growth story. With the help of the Trump administration, it’s turning into a coal growth story, too.
Already several coal plants have extended out their retirement dates, either to maintain reliability on local grids or because the Trump administration ordered them to. In America’s largest electricity market, PJM Interconnection, where about a fifth of the installed capacity is coal, diversified energy company Alliance Resource Partners expects 4% to 6% demand growth, meaning it might even be able to increase coal production. Coal consumption has jumped 16% in PJM in the first nine months of 2025, the company’s Chairman Joseph Kraft told analysts.
“The domestic thermal coal market is continuing to experience strong fundamentals, supported by an unprecedented combination of federal energy and environmental policy support plus rapid demand growth,” Kraft said in a statement accompanying the company’s October third quarter earnings report. He pointed specifically to “natural gas pricing dynamics” and “the dramatic load growth required by artificial intelligence.”
Observers are also taking notice. “The key driver for coal prices remains strong natural gas prices,” industry newsletter The Coal Trader wrote.
In its December short term outlook, the EIA said that it expects “coal consumption to increase by 9% in 2025, driven by an 11% increase in coal consumption in the electric power sector this year as both natural gas costs and electricity demand increased,” while falling slightly in 2026 (compared to 2025), leaving coal consumption sill above 2024 levels.
“2025 coal generation will have increased for the first time since the last time gas prices spiked,” McCullagh told me.
Assuming all this comes to pass, the U.S.’s total carbon dioxide emissions will have essentially flattened out at around 4.8 million metric tons. The ultimate cost of higher natural gas prices will likely be felt far beyond the borders of the United States and far past 2026.
Lawmakers today should study the Energy Security Act of 1980.
The past few years have seen wild, rapid swings in energy policy in the United States, from President Biden’s enthusiastic embrace of clean energy to President Trump’s equally enthusiastic re-embrace of fossil fuels.
Where energy industrial policy goes next is less certain than any other moment in recent memory. Regardless of the direction, however, we will need creative and effective policy tools to secure our energy future — especially for those of us who wish to see a cleaner, greener energy system. To meet the moment, we can draw inspiration from a largely forgotten piece of energy industrial policy history: the Energy Security Act of 1980.
After a decade of oil shocks and energy crises spanning three presidencies, President Carter called for — and Congress passed — a new law that would “mobilize American determination and ability to win the energy war.” To meet that challenge, lawmakers declared their intent “to utilize to the fullest extent the constitutional powers of the Congress” to reduce the nation’s dependence on imported oil and shield the economy from future supply shocks. Forty-five years later, that brief moment of determined national mobilization may hold valuable lessons for the next stage of our energy industrial policy.
The 1970s were a decade of energy volatility for Americans, with spiking prices and gasoline shortages, as Middle Eastern fossil fuel-producing countries wielded the “oil weapon” to throttle supply. In his 1979 “Crisis of Confidence” address to the nation, Carter warned that America faced a “clear and present danger” from its reliance on foreign oil and urged domestic producers to mobilize new energy sources, akin to the way industry responded to World War II by building up a domestic synthetic rubber industry.
To develop energy alternatives, Congress passed the Energy Security Act, which created a new government-run corporation dedicated to investing in alternative fuels projects, a solar bank, and programs to promote geothermal, biomass, and renewable energy sources. The law also authorized the president to create a system of five-year national energy targets and ordered one of the federal government’s first studies on the impacts of greenhouse gases from fossil fuels.
Carter saw the ESA as the beginning of an historic national mission. “[T]he Energy Security Act will launch this decade with the greatest outpouring of capital investment, technology, manpower, and resources since the space program,” he said at the signing. “Its scope, in fact, is so great that it will dwarf the combined efforts expended to put Americans on the Moon and to build the entire Interstate Highway System of our country.” The ESA was a recognition that, in a moment of crisis, the federal government could revive the tools it once used in wartime to meet an urgent civilian challenge.
In its pursuit of energy security, the Act deployed several remarkable industrial policy tools, with the Synthetic Fuels Corporation as the centerpiece. The corporation was a government-run investment bank chartered to finance — and in some cases, directly undertake — alternative fuels projects, including those derived from coal, shale, and oil.. Regardless of the desirability or feasibility of synthetic fuels, the SFC as an institution illustrates the type of extraordinary authority Congress was once willing to deploy to address energy security and stand up an entirely new industry. It operated outside of federal agencies, unencumbered by the normal bureaucracy and restrictions that apply to government.
Along with everything else created by the ESA, the Sustainable Fuels Corporation was also financed by a windfall profits tax assessed on oil companies, essentially redistributing income from big oil toward its nascent competition. Both the law and the corporation had huge bipartisan support, to the tune of 317 votes for the ESA in the House compared to 93 against, and 78 to 12 in the Senate.
The Synthetic Fuels Corporation was meant to be a public catalyst where private investment was unlikely to materialize on its own. Investors feared that oil prices could fall, or that OPEC might deliberately flood the market to undercut synthetic fuels before they ever reached scale. Synthetic fuel projects were also technically complex, capital-intensive undertakings, with each plant costing several billion dollars, requiring up to a decade to plan and build.
To address this, Congress equipped the corporation with an unusually broad set of tools. The corporation could offer loans, loan guarantees, price guarantees, purchase agreements, and even enter joint ventures — forms of support meant to make first-of-a-kind projects bankable. It could assemble financing packages that traditional lenders viewed as too risky. And while the corporation was being stood up, the president was temporarily authorized to use Defense Production Act powers to initiate early synthetic fuel projects. Taken together, these authorities amounted to a federal attempt to build an entirely new energy industry.
While the ESA gave the private sector the first shot at creating a synthetic fuels industry, it also created opportunities for the federal government to invest. The law authorized the Synthetic Fuels Corporation to undertake and retain ownership over synthetic fuels construction projects if private investment was insufficient to meet production targets. The SFC was also allowed to impose conditions on loans and financial assistance to private developers that gave it a share of project profits and intellectual property rights arising out of federally-funded projects. Congress was not willing to let the national imperative of energy security rise or fall on the whims of the market, nor to let the private sector reap publicly-funded windfalls.
Employing logic that will be familiar to many today, Carter was particularly concerned that alternative fuel sources would be unduly delayed by permitting rules and proposed an Energy Mobilization Board to streamline the review process for energy projects. Congress ultimately refused to create it, worried it would trample state authority and environmental protections. But the impulse survived elsewhere. At a time when the National Environmental Policy Act was barely 10 years old and had become the central mechanism for scrutinizing major federal actions, Congress provided an exemption for all projects financed by the Synthetic Fuels Corporation, although other technologies supported in the law — like geothermal energy — were still required to go through NEPA review. The contrast is revealing — a reminder that when lawmakers see an energy technology as strategically essential, they have been willing not only to fund it but also to redesign the permitting system around it.
Another forgotten feature of the corporation is how far Congress went to ensure it could actually hire top tier talent. Lawmakers concluded that the federal government’s standard pay scales were too low and too rigid for the kind of financial, engineering, and project development expertise the Synthetic Fuels Corporation needed. So it gave the corporation unusual salary flexibility, allowing it to pay above normal civil service rates to attract people with the skills to evaluate multibillion dollar industrial projects. In today’s debates about whether federal agencies have the capacity to manage complex clean energy investments, this detail is striking. Congress once knew that ambitious industrial policy requires not just money, but people who understand how deals get done.
But the Energy Security Act never had the chance to mature. The corporation was still getting off the ground when Carter lost the 1980 election to Ronald Reagan. Reagan’s advisers viewed the project as a distortion of free enterprise — precisely the kind of government intervention they believed had fueled the broader malaise of the 1970s. While Reagan had campaigned on abolishing the Department of Energy, the corporation proved an easier and more symbolic target. His administration hollowed it out, leaving it an empty shell until Congress defunded it entirely in 1986.
At the same time, the crisis atmosphere that had justified the Energy Security Act began to wane. Oil prices fell nearly 60% during Reagan’s first five years, and with them the political urgency behind alternative fuels. Drained of its economic rationale, the synthetic fuels industry collapsed before it ever had a chance to prove whether it could succeed under more favorable conditions. What had looked like a wartime mobilization suddenly appeared to many lawmakers to be an expensive overreaction to a crisis that had passed.
Yet the ESA’s legacy is more than an artifact of a bygone moment. It offers at least three lessons that remain strikingly relevant today:
As we now scramble to make up for lost time, today’s clean energy push requires institutions that can survive electoral swings. Nearly half a century after the ESA, we must find our way back to that type of institutional imagination to meet the energy challenges we still face.