Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

The Weird Reasons Behind the Atlantic Ocean’s Crazy Heat

Is the ocean warming up because too little dust is blowing over from the Sahara?

Earth.
Heatmap Illustration/Getty Images, DSCOVR

Lately, the North Atlantic Ocean has been more than just hot. It has been anomalously, weirdly hot. On Sunday, the ocean’s average surface temperature was 74 degrees Fahrenheit, or 23 degrees Celsius — a number normally seen a month from now, in late July. The Atlantic was warmer last month than in any previous May since 1850, according to the Met Office, the United Kingdom’s national weather service. Even more impressively, it beat the previous record by more than any previous record, for any month, has been broken. June seems virtually guaranteed to set another all-time high.

This outrageous warmth is primarily caused by climate change. And in climate science, it is generally not good news when a year’s temperature line is so immediately visible above the pack:

Sea surface temperature chart.The North Atlantic’s sea surface temperature by date.Courtesy of ClimateReanalyzer.org, Climate Change Institute from the University of Maine

The heat wave is particularly intense in the North Atlantic’s eastern half, which runs from Mauritania to Portugal, France, and the British Isles. According to the National Oceanic and Atmospheric Administration, the marine heat wave around the United Kingdom qualifies as a Level 5, or “beyond extreme,” event.

Such warm water would normally give rise to enormous hurricanes. And the western Atlantic has been off to a productive start, creating Tropical Storms Brett and Cindy earlier this month. But since the western Atlantic, which borders North America and the Caribbean, has been chillier, those storms have been unable to survive the journey across the ocean and have been torn apart by wind shear.

Under other circumstances, a marine heat wave of this magnitude would be dangerous for underwater animals and plants — but perhaps a curiosity for land-dwelling humans. Of course, any anomaly of this magnitude — more than two standard deviations above the trend — is extremely concerning and might raise fears that the planet has entered some kind of new normal. The Atlantic’s outrageous warmth has also attracted wider attention because it raises one of the most controversial questions in climate science: Did we accidentally stop geoengineering the oceans?

Three years ago, the United Nations agency that regulates shipping mandated that cargo ships switch from the high-sulfur form of fuel that they were previously using to a cleaner, lower-sulfur type of fuel. When burned, sulfur creates a pollutant called sulfur dioxide, which causes haze, acid rain, and health problems. The mandate worked: Ships have moved away from high-sulfur fuels, which has significantly cut aerosol emissions.

Which seems like an environmental-policy success story. Except that Leon Simons, a researcher at the Dutch chapter of the Club of Rome, argues that it was a grave mistake. Aerosol pollution reflects the sun’s rays back into space: It’s not wrong to see it as a form of solar-radiation management, or geoengineering. Aerosol emissions cool the planet by about 0.5 degrees Celsius, or about 1 degree Fahrenheit, according to the Intergovernmental Panel on Climate Change. (Aerosol pollution doesn’t just refer to sulfur dioxide, but to any small particle of a solid or liquid that is larger than a molecule but small enough to float in the air.)

When ships began burning low-sulfur fuel, they reduced some of this net cooling effect — even as they kept pouring carbon dioxide and other climate pollution into the atmosphere. Simons asserts that this inadvertent end to geoengineering is partially to blame for the ongoing heat wave afflicting the world’s oceans.

Other researchers are far less certain. Brian McNoldy, a senior research scientist at the University of Miami, told me that the low-sulfur timeline doesn’t add up. Cargo ships had to stop using high-sulfur fuels by January 1, 2020, and sulfur dioxide and aerosols only persist in the atmosphere for a few days or weeks. Those cooling aerosols rained out two and a half years ago. So why did the Atlantic Ocean start cooking in February of this year?

“I don’t totally buy the low-sulfur fuels. It doesn’t explain the past two or three months becoming abruptly record-breaking,” he said. “It might be a driver, but it’s not the reason.”

He explains the North Atlantic heat wave by looking to two other far more weather-related factors. First, he said, the Sahara Desert is generating less dust than it normally does. Every spring and summer, winds moving across northern Africa toss up enormous amounts of sand and dust from the Sahara — so much that it creates a recognizably beige haze over the North Atlantic. Like any other aerosol, that Saharan dust reflects sunlight and cools the Earth’s surface.

In a normal year, so much of that dust would have been kicked up by now that it would have blown all the way to South Florida, according to Michael Lowry, a meteorologist at ABC 10, a Miami news station. But this year, winds haven’t picked up as much dust, and the first major Saharan dust haze only appeared in the past week or so. The satellite DSCOVR picked up the first images of that dust storm on Saturday:

Satellite photo of Sahara dust.An image from the DSCOVR spacecraft’s Earth Polychromatic Camera, or EPIC, captured on Saturday, June 24, 2023.NASA / Heatmap Illustration

With less dust to reflect the sun’s rays, more have reached the ocean — and warmed its surface.

Second, the weather over the North Atlantic has been unusually stagnant. The wind plays a big role in warming up or cooling down the ocean surface: When winds push the oceans around a lot, surface water tends to mix with deeper water and the air, producing a cooling effect; when winds slacken, the sea sits stagnant and heats up.

The winds have been still lately. There’s a “large-scale blocking pattern” in the jet stream that is preventing storms from moving across the North Atlantic, and generally discouraging winds from pushing around the sea surface, McNoldy said.

The cause of all this stagnation is an atypically weak “Azores High,” a quasi-permanent high pressure system that sits over the North Atlantic throughout the year. It hasn’t drawn in Saharan dust or generated winds to push ocean water around, turning the western Atlantic into the planetary equivalent of a kiddie pool on a hot day. “It’s allowing the ocean to really cook,” McNoldy said.

The warmth is now so pronounced that even a change in weather won’t drive it out for some time. Even if the circumstances causing the warming were to fade now, McNoldy told me, the ocean is “not gonna get back to normal any time soon.”

That could eventually cause problems for folks in the Americas. Right now, the western Atlantic is generating storms like it’s the late summer, while the cooler eastern Atlantic is tearing them apart. Were the eastern Atlantic to get just a little warmer, it might let those storms survive or even strengthen them — leading to an unusually strong hurricane season.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Ideas

The Last Time America Tried to Legislate Its Way to Energy Affordability

Lawmakers today should study the Energy Security Act of 1980.

Jimmy Carter.
Heatmap Illustration/Getty Images, Library of Congress

The past few years have seen wild, rapid swings in energy policy in the United States, from President Biden’s enthusiastic embrace of clean energy to President Trump’s equally enthusiastic re-embrace of fossil fuels.

Where energy industrial policy goes next is less certain than any other moment in recent memory. Regardless of the direction, however, we will need creative and effective policy tools to secure our energy future — especially for those of us who wish to see a cleaner, greener energy system. To meet the moment, we can draw inspiration from a largely forgotten piece of energy industrial policy history: the Energy Security Act of 1980.

Keep reading...Show less
Blue
AM Briefing

The Grinch of Offshore Wind

On Google’s energy glow up, transmission progress, and South American oil

Donald Trump.
Heatmap Illustration/Getty Images

Current conditions: Nearly two dozen states from the Rockies through the Midwest and Appalachians are forecast to experience temperatures up to 30 degrees above historical averages on Christmas Day • Parts of northern New York and New England could get up to a foot of snow in the coming days • Bethlehem, the West Bank city south of Jerusalem in which Christians believe Jesus was born, is preparing for a sunny, cloudless Christmas Day, with temperatures around 60 degrees Fahrenheit.

This is our last Heatmap AM of 2025, but we’ll see you all again in 2026!

THE TOP FIVE

1. Trump halts construction on all offshore wind projects

Just two weeks after a federal court overturned President Donald Trump’s Day One executive order banning new offshore wind permits, the administration announced a halt to all construction on seaward turbines. Secretary of the Interior Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!” As Heatmap’s Jael Holzman explained in her writeup, there are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. “The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told Fox Business host Maria Bartiromo.

Keep reading...Show less
Green
Energy

Google Is Cornering the Market on Energy Wonks

The hyperscaler is going big on human intelligence to help power its artificial intelligence.

The Google logo holding electricity.
Heatmap Illustration/Getty Images

Google is on an AI hiring spree — and not just for people who can design chips and build large language models. The tech giant wants people who can design energy systems, too.

Google has invested heavily of late in personnel for its electricity and infrastructure-related teams. Among its key hires is Tyler Norris, a former Duke University researcher and one of the most prominent proponents of electricity demand flexibility for data centers, who started in November as “head of market innovation” on the advanced energy team. The company also hired Doug Lewin, an energy consultant and one of the most respected voices in Texas energy policy, to lead “energy strategy and market design work in Texas,” according to a note he wrote on LinkedIn. Nathan Iyer, who worked on energy policy issues at RMI, has been a contractor for Google Clean Energy for about a year. (The company also announced Monday that it’s shelling out $4.5 billion to acquire clean energy developer Intersect.)

Keep reading...Show less
Yellow