You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Is the ocean warming up because too little dust is blowing over from the Sahara?
Lately, the North Atlantic Ocean has been more than just hot. It has been anomalously, weirdly hot. On Sunday, the ocean’s average surface temperature was 74 degrees Fahrenheit, or 23 degrees Celsius — a number normally seen a month from now, in late July. The Atlantic was warmer last month than in any previous May since 1850, according to the Met Office, the United Kingdom’s national weather service. Even more impressively, it beat the previous record by more than any previous record, for any month, has been broken. June seems virtually guaranteed to set another all-time high.
This outrageous warmth is primarily caused by climate change. And in climate science, it is generally not good news when a year’s temperature line is so immediately visible above the pack:
The North Atlantic’s sea surface temperature by date.Courtesy of ClimateReanalyzer.org, Climate Change Institute from the University of Maine
The heat wave is particularly intense in the North Atlantic’s eastern half, which runs from Mauritania to Portugal, France, and the British Isles. According to the National Oceanic and Atmospheric Administration, the marine heat wave around the United Kingdom qualifies as a Level 5, or “beyond extreme,” event.
Such warm water would normally give rise to enormous hurricanes. And the western Atlantic has been off to a productive start, creating Tropical Storms Brett and Cindy earlier this month. But since the western Atlantic, which borders North America and the Caribbean, has been chillier, those storms have been unable to survive the journey across the ocean and have been torn apart by wind shear.
Under other circumstances, a marine heat wave of this magnitude would be dangerous for underwater animals and plants — but perhaps a curiosity for land-dwelling humans. Of course, any anomaly of this magnitude — more than two standard deviations above the trend — is extremely concerning and might raise fears that the planet has entered some kind of new normal. The Atlantic’s outrageous warmth has also attracted wider attention because it raises one of the most controversial questions in climate science: Did we accidentally stop geoengineering the oceans?
Three years ago, the United Nations agency that regulates shipping mandated that cargo ships switch from the high-sulfur form of fuel that they were previously using to a cleaner, lower-sulfur type of fuel. When burned, sulfur creates a pollutant called sulfur dioxide, which causes haze, acid rain, and health problems. The mandate worked: Ships have moved away from high-sulfur fuels, which has significantly cut aerosol emissions.
Which seems like an environmental-policy success story. Except that Leon Simons, a researcher at the Dutch chapter of the Club of Rome, argues that it was a grave mistake. Aerosol pollution reflects the sun’s rays back into space: It’s not wrong to see it as a form of solar-radiation management, or geoengineering. Aerosol emissions cool the planet by about 0.5 degrees Celsius, or about 1 degree Fahrenheit, according to the Intergovernmental Panel on Climate Change. (Aerosol pollution doesn’t just refer to sulfur dioxide, but to any small particle of a solid or liquid that is larger than a molecule but small enough to float in the air.)
When ships began burning low-sulfur fuel, they reduced some of this net cooling effect — even as they kept pouring carbon dioxide and other climate pollution into the atmosphere. Simons asserts that this inadvertent end to geoengineering is partially to blame for the ongoing heat wave afflicting the world’s oceans.
Other researchers are far less certain. Brian McNoldy, a senior research scientist at the University of Miami, told me that the low-sulfur timeline doesn’t add up. Cargo ships had to stop using high-sulfur fuels by January 1, 2020, and sulfur dioxide and aerosols only persist in the atmosphere for a few days or weeks. Those cooling aerosols rained out two and a half years ago. So why did the Atlantic Ocean start cooking in February of this year?
“I don’t totally buy the low-sulfur fuels. It doesn’t explain the past two or three months becoming abruptly record-breaking,” he said. “It might be a driver, but it’s not the reason.”
He explains the North Atlantic heat wave by looking to two other far more weather-related factors. First, he said, the Sahara Desert is generating less dust than it normally does. Every spring and summer, winds moving across northern Africa toss up enormous amounts of sand and dust from the Sahara — so much that it creates a recognizably beige haze over the North Atlantic. Like any other aerosol, that Saharan dust reflects sunlight and cools the Earth’s surface.
In a normal year, so much of that dust would have been kicked up by now that it would have blown all the way to South Florida, according to Michael Lowry, a meteorologist at ABC 10, a Miami news station. But this year, winds haven’t picked up as much dust, and the first major Saharan dust haze only appeared in the past week or so. The satellite DSCOVR picked up the first images of that dust storm on Saturday:
An image from the DSCOVR spacecraft’s Earth Polychromatic Camera, or EPIC, captured on Saturday, June 24, 2023.NASA / Heatmap Illustration
With less dust to reflect the sun’s rays, more have reached the ocean — and warmed its surface.
Second, the weather over the North Atlantic has been unusually stagnant. The wind plays a big role in warming up or cooling down the ocean surface: When winds push the oceans around a lot, surface water tends to mix with deeper water and the air, producing a cooling effect; when winds slacken, the sea sits stagnant and heats up.
The winds have been still lately. There’s a “large-scale blocking pattern” in the jet stream that is preventing storms from moving across the North Atlantic, and generally discouraging winds from pushing around the sea surface, McNoldy said.
The cause of all this stagnation is an atypically weak “Azores High,” a quasi-permanent high pressure system that sits over the North Atlantic throughout the year. It hasn’t drawn in Saharan dust or generated winds to push ocean water around, turning the western Atlantic into the planetary equivalent of a kiddie pool on a hot day. “It’s allowing the ocean to really cook,” McNoldy said.
The warmth is now so pronounced that even a change in weather won’t drive it out for some time. Even if the circumstances causing the warming were to fade now, McNoldy told me, the ocean is “not gonna get back to normal any time soon.”
That could eventually cause problems for folks in the Americas. Right now, the western Atlantic is generating storms like it’s the late summer, while the cooler eastern Atlantic is tearing them apart. Were the eastern Atlantic to get just a little warmer, it might let those storms survive or even strengthen them — leading to an unusually strong hurricane season.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for many of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Five major fires started during the Santa Ana wind event this week:
Officials have not made any statements about the cause of any of the fires yet.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At about 27,000 acres burned, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 2,000 structures damaged so far, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 1,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between very wet and very dry years over the past eight decades. But climate change is expected to make dry years drier in Los Angeles. “The LA area is about 3°C warmer than it would be in preindustrial conditions, which (all else being equal) works to dry fuels and makes fires more intense,” Brown wrote.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.
And more of this week’s top policy news around renewables.
1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.
2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.
3. Biden’s parting words – The Biden administration has finished its long-awaited guidance for the IRA’s tech-neutral electricity credit (which barely changed) and hydrogen production credit.