You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

It’s not easy to build a wind project. Many of the best spots for generating wind power are already occupied by turbines. Even if you do find a good one, then comes everything else — inflation in the supply chain, convincing a local community that they want a wind farm near them, leasing the land, and so on and so forth. The whole process can take as long as five years.
But what about just making an existing wind farm … better.
This option, known as repowering, is becoming more attractive to wind developers and operators as existing wind assets age — operators get a more efficient wind farm, and developers get to avoid the many headaches of starting from scratch. The topic came up Tuesday, in fact, at the American Council on Renewable Energy’s 2024 Finance Forum. There are “some real opportunities for repower,” said David Giordano, BlackRock’s global head of climate infrastructure, on a panel about scaling capital to meet demand growth for renewables.
“When you repower a project, oftentimes you can utilize some of the existing infrastructure. And that means that you can add new equipment without the full cost of a greenfield development,” Eric Lantz, director of the Wind Energy Technologies Office at the Department of Energy, explained to me. When you install more modern equipment, he said, “you have higher hub heights, you have larger rotors — you can capture more energy from that site.”
Even if you tear down everything and rebuild from the ground up, Lantz told me, repowering still means you can use the existing transmission and interconnection, meaning developers can get more generation without having to deal with infamously long interconnection queues, which can impose yet more years on the energy development timeline.
Lantz collaborated on a 2020 research paper with a trio of Danish wind researchers (Denmark has one of the largest and most advanced wind power industries in the world) and found that from 2012 to 2019, 38% of all wind energy development projects in the country involved replacing old equipment as opposed to building on new sites. Repowering can be attractive to both developers and local communities, the researchers explained, because larger and more efficient turbines can actually reduce the net number of turbines on a given site while generating the same or even more power, with less visual disruption and less maintenance required.
Last year, Wood Mackenzie estimated that repowering onshore wind assets would lead to more installed capacity than new offshore wind in 2025 and 2026. In 2022, the U.S. repowered 1.7 gigawatts of wind plants, mostly by upgrading rotors (blades) and nacelle components like gearboxes and generators, upping their total capacity to 1.8 gigawatts, according to the Department of Energy. Average rotor diameter increased from 93 meters to 112 meters, adding on about the length of an 18-wheeler to the typical rotor.
Repowering has been a favored strategy of some of the biggest renewable developers, who have large and aging fleets of wind turbines that often already occupy prime spots. At the massive Shepherds Flat site in Oregon, for instance, Brookfield Renewable Partners replaced more than 300 turbines — i.e. over 900 blades — with new ones that were about 90 feet longer, upping the site’s total generation by some 20%.
At a proposed repowering in Southern California, Brookfield wants to replace around 450 turbines with just eight, while a New York repowering increased generation by almost 30% “while maintaining the same number of units to minimize ground disturbance,” the company said.
The rationale for repowering, like everything in energy, is a mixture of mechanical and financial. Over time, wind turbines tend to degrade, with actual power generation falling off. Even just by restoring a wind farm’s initial generating capacity, repowering can increase output, with newer, more advanced equipment, capacity can notably increase. And when renewable developers have to answer to investors, that cheaper generation can look quite attractive.
The energy developer NextEra plans to repower 1.4 gigawatts of its wind projects through 2026, the company’s chief financial officer said in an April earning call, and in January said that it had repowered a quarter of its existing 24 megawatts of wind. At that time, NextEra chief executive John Ketchum told analysts that the cost had been “roughly 50% to 80% of the cost of a new build and starting a new 10 years of production tax credits, resulting in attractive returns for shareholders.”
“With over a decade to potentially qualify for repowering,” he added, “it represents a great opportunity set.”
Looking at wind projects from before and after 2012, Scott Wilmot, an executive vice president at Enverus Intelligence Research, calculated that average capacity factor increased from around 30% to around 40%. “Swapping new equipment right off the bat, you can get a plus-10 percentage point gain on capacity factor,” he told me.
And then there’s the tax incentives. Repowering “resets” the production tax credit that’s the lifeblood of the wind industry, allowing owners and developers to claim it for another 10 years. When Enverus looked at a hypothetical project that had been operational since 2011 and repowered in 2023, it was possible that its production tax credit for an additional 10 years could increase from $22 per megawatt to almost $28. “It really does make the economics look quite attractive,” he told me.
“If you can get close to 10 percentage point capacity factor gain, you blow pretty much any greenfield, new build project out of the water.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.