You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

It’s not easy to build a wind project. Many of the best spots for generating wind power are already occupied by turbines. Even if you do find a good one, then comes everything else — inflation in the supply chain, convincing a local community that they want a wind farm near them, leasing the land, and so on and so forth. The whole process can take as long as five years.
But what about just making an existing wind farm … better.
This option, known as repowering, is becoming more attractive to wind developers and operators as existing wind assets age — operators get a more efficient wind farm, and developers get to avoid the many headaches of starting from scratch. The topic came up Tuesday, in fact, at the American Council on Renewable Energy’s 2024 Finance Forum. There are “some real opportunities for repower,” said David Giordano, BlackRock’s global head of climate infrastructure, on a panel about scaling capital to meet demand growth for renewables.
“When you repower a project, oftentimes you can utilize some of the existing infrastructure. And that means that you can add new equipment without the full cost of a greenfield development,” Eric Lantz, director of the Wind Energy Technologies Office at the Department of Energy, explained to me. When you install more modern equipment, he said, “you have higher hub heights, you have larger rotors — you can capture more energy from that site.”
Even if you tear down everything and rebuild from the ground up, Lantz told me, repowering still means you can use the existing transmission and interconnection, meaning developers can get more generation without having to deal with infamously long interconnection queues, which can impose yet more years on the energy development timeline.
Lantz collaborated on a 2020 research paper with a trio of Danish wind researchers (Denmark has one of the largest and most advanced wind power industries in the world) and found that from 2012 to 2019, 38% of all wind energy development projects in the country involved replacing old equipment as opposed to building on new sites. Repowering can be attractive to both developers and local communities, the researchers explained, because larger and more efficient turbines can actually reduce the net number of turbines on a given site while generating the same or even more power, with less visual disruption and less maintenance required.
Last year, Wood Mackenzie estimated that repowering onshore wind assets would lead to more installed capacity than new offshore wind in 2025 and 2026. In 2022, the U.S. repowered 1.7 gigawatts of wind plants, mostly by upgrading rotors (blades) and nacelle components like gearboxes and generators, upping their total capacity to 1.8 gigawatts, according to the Department of Energy. Average rotor diameter increased from 93 meters to 112 meters, adding on about the length of an 18-wheeler to the typical rotor.
Repowering has been a favored strategy of some of the biggest renewable developers, who have large and aging fleets of wind turbines that often already occupy prime spots. At the massive Shepherds Flat site in Oregon, for instance, Brookfield Renewable Partners replaced more than 300 turbines — i.e. over 900 blades — with new ones that were about 90 feet longer, upping the site’s total generation by some 20%.
At a proposed repowering in Southern California, Brookfield wants to replace around 450 turbines with just eight, while a New York repowering increased generation by almost 30% “while maintaining the same number of units to minimize ground disturbance,” the company said.
The rationale for repowering, like everything in energy, is a mixture of mechanical and financial. Over time, wind turbines tend to degrade, with actual power generation falling off. Even just by restoring a wind farm’s initial generating capacity, repowering can increase output, with newer, more advanced equipment, capacity can notably increase. And when renewable developers have to answer to investors, that cheaper generation can look quite attractive.
The energy developer NextEra plans to repower 1.4 gigawatts of its wind projects through 2026, the company’s chief financial officer said in an April earning call, and in January said that it had repowered a quarter of its existing 24 megawatts of wind. At that time, NextEra chief executive John Ketchum told analysts that the cost had been “roughly 50% to 80% of the cost of a new build and starting a new 10 years of production tax credits, resulting in attractive returns for shareholders.”
“With over a decade to potentially qualify for repowering,” he added, “it represents a great opportunity set.”
Looking at wind projects from before and after 2012, Scott Wilmot, an executive vice president at Enverus Intelligence Research, calculated that average capacity factor increased from around 30% to around 40%. “Swapping new equipment right off the bat, you can get a plus-10 percentage point gain on capacity factor,” he told me.
And then there’s the tax incentives. Repowering “resets” the production tax credit that’s the lifeblood of the wind industry, allowing owners and developers to claim it for another 10 years. When Enverus looked at a hypothetical project that had been operational since 2011 and repowered in 2023, it was possible that its production tax credit for an additional 10 years could increase from $22 per megawatt to almost $28. “It really does make the economics look quite attractive,” he told me.
“If you can get close to 10 percentage point capacity factor gain, you blow pretty much any greenfield, new build project out of the water.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
With more electric heating in the Northeast comes greater strains on the grid.
The electric grid is built for heat. The days when the system is under the most stress are typically humid summer evenings, when air conditioning is still going full blast, appliances are being turned on as commuters return home, and solar generation is fading, stretching the generation and distribution grid to its limits.
But as home heating and transportation goes increasingly electric, more of the country — even some of the chilliest areas — may start to struggle with demand that peaks in the winter.
While summer demand peaks are challenging, there’s at least a vision for how to deal with them without generating excessive greenhouse gas emissions — namely battery storage, which essentially holds excess solar power generated in the afternoon in reserve for the evening. In states with lots of renewables on the grid already, like California and Texas, storage has been helping smooth out and avoid reliability issues on peak demand days.
The winter challenge is that you can have long periods of cold weather and little sun, stressing every part of the grid. The natural gas production and distribution systems can struggle in the cold with wellheads freezing up and mechanical failure at processing facilities, just as demand for home heating soars, whether provided by piped gas or electricity generated from gas-fired power plants.
In its recent annual seasonal reliability assessment, the North American Reliability Corporation, a standard-setting body for grid operators, found that “much of North America is again at an elevated risk of having insufficient energy supplies” should it encounter “extreme operating conditions,” i.e. “any prolonged, wide-area cold snaps.”
NERC cited growing electricity demand and the difficulty operating generators in the winter, especially those relying on natural gas. In 2021, Winter Storm Uri effectively shut down Texas’ grid for several days as generation and distribution of natural gas literally froze up while demand for electric heating soared. Millions of Texans were left exposed to extreme low temperatures, and at least 246 died as a result.
Some parts of the country already experience winter peaks in energy demand, especially places like North Carolina and Oregon, which “have winters that are chilly enough to require some heating, but not so cold that electric heating is rare,” in the words of North Carolina State University professor Jeremiah Johnson. "Not too many Mainers or Michiganders heat their homes with electricity,” he said.
But that might not be true for long.
New England may be cold and dark in the winter, but it’s liberal all year round. That means the region’s constituent states have adopted aggressive climate change and decarbonization goals that will stretch their available renewable resources, especially during the coldest days, weeks, and months.
The region’s existing energy system already struggles with winter. New England’s natural gas system is limited by insufficient pipeline capacity, so during particularly cold days, power plants end up burning oil as natural gas is diverted from generating electricity to heating homes.
New England’s Independent System Operator projects that winter demand will peak at just above 21 gigawatts this year — its all-time winter peak is 22.8 gigawatts, summer is 28.1 — which ISO-NE says the region is well-prepared for, with 31 gigawatts of available capacity. That includes energy from the Vineyard Wind offshore wind project, which is still facing activist opposition, as well as imported hydropower from Quebec.
But going forward, with Massachusetts aiming to reduce emissions 50% by 2030 (though state lawmakers are trying to undo that goal) and reach net-zero emissions by 2050 — and nearly the entire region envisioning at least 80% emissions reductions by 2050 — that winter peak is expected to soar. The non-carbon-emitting energy generation necessary to meet that demand, meanwhile, is still largely unbuilt.
By the mid 2030s, ISO-NE expects its winter peak to surpass its summer peak, with peak demand perhaps reaching as high as 57 gigawatts, more than double the system’s all-time peak load. Those last few gigawatts of this load will be tricky — and expensive — to serve. ISO-NE estimates that each gigawatt from 51 to 57 would cost $1.5 billion for transmission expansion alone.
ISO-NE also found that “the battery fleet may be depleted quickly and then struggle to recharge during the winter months,” which is precisely when “batteries may be needed most to fill supply gaps during periods of high demand due to cold weather, as well as periods of low production from wind and solar resources.” Some 600 megawatts of battery storage capacity has come online in the last decade in ISO-NE, and there are state mandates for at least 7 more gigawatts between 2030 and 2033.
There will also be a “continued need for fuel-secure dispatchable resources” through 2050, ISO-NE has found — that is, something to fill the role that natural gas, oil, and even coal play on the coldest days and longest cold stretches of the year.
This could mean “vast quantities of seasonal storage,” like 100-hour batteries, or alternative fuels like synthetic natural gas (produced with a combination of direct air capture and electrolysis, all powered by carbon-free power), hydrogen, biodiesel, or renewable diesel. And this is all assuming a steady buildout of renewable power — including over a gigawatt per year of offshore wind capacity added through 2050 — that will be difficult if not impossible to accomplish given the current policy and administrative roadblocks.
While planning for the transmission and generation system of 2050 may be slightly fanciful, especially as the climate policy environment — and the literal environment — are changing rapidly, grid operators in cold regions are worried about the far nearer term.
From 2027 to 2032, ISO-NE analyses “indicate an increasing energy shortfall risk profile,” said ISO-NE planning official Stephen George in a 2024 presentation.
“What keeps me up at night is the winter of 2032,” Richard Dewey, chief executive of the neighboring New York Independent System Operator, said at a 2024 conference. “I don’t know what fills that gap in the year 2032.”
The future of the American electric grid is being determined in the docket of the Federal Energy Regulatory Commission.
The Trump administration tasked federal energy regulators last month to come up with new rules that would allow large loads — i.e. data centers — to connect to the grid faster without ballooning electricity bills. The order has set off a flurry of reactions, as the major players in the electricity system — the data center developers, the power producers, the utilities — jockey to ensure that any new rules don’t impinge upon their business models. The initial public comment period closed last week, meaning now FERC will have to go through hundreds of comments from industry, government, and advocacy stakeholders, hoping to help shape the rule before it’s released at the end of April.
They’ll have a lot to sift through. Opinions ranged from skeptical to cautiously supportive to fully supportive, with imperfect alignment among trade groups and individual companies.
The Utilities
When the DOE first asked FERC to get to work on a rule, several experts identified a possible conflict with utilities, namely the idea that data centers “should be responsible for 100% of the network upgrades that they are assigned through the interconnection studies.” Utilities typically like to put new transmission into their rate base, where they can earn a regulated rate of return on their investments that’s recouped from payments from all their customers. And lo, utilities were largely skeptical of the exercise.
The Edison Electric Institute, which represents investor-owned utilities, wrote in its comments to FERC that the new rule should require large load customers to pay for their share of the transmission system costs, i.e. not the full cost of network upgrades.
EEI claimed that these network costs can add up to the “tens to hundreds of millions of dollars” that should be assigned in a way that allows utilities “to earn a return of and on the entirety of the transmission network.”
In short, the utilities are defending something like the traditional model, where utilities connect all customers and spread out the costs of doing so among the entire customer base. That model has come under increasing stress thanks to the flood of data center interconnection requests, however. The high costs in some markets, like PJM, have also led some scholars and elected officials to seriously reconsider the nature of utility regulation. Still, that model has been largely good for the utilities — and they show no sign of wanting to give it up.
The Hyperscalers
The biggest technology companies, like Google, Microsoft, and Meta, and their trade groups want to make sure their ability to connect to the grid will not be impeded by new rules.
Ari Peskoe, an energy law professor at Harvard Law School, told me that existing processes for interconnection are likely working out well for the biggest data center developers and they may not be eager to rock the boat with a federal overhaul. “Presumably utilities are lining up to do deals with them because they have so much money,” Peskoe said.
In its letter to FERC, the DOE suggested that the commission could expedite interconnection of large loads “that agree to be curtailable.” That would entail users of a lot of electricity ramping down use while the grid was under stress, as well as co-locating projects with new sources of energy generation that could serve the grid as a whole. This approach has picked up steam among researchers and some data center developers, although with some cautions and caveats.
The Clean Energy Buyers Association, which represents many large technology companies, wrote in its comment that such flexibility should be “structured to enable innovation and competition through voluntary pathways rather than mandates,” echoing criticism of a proposal by the electricity market PJM Interconnection that could have forced large loads to be eligible for curtailment.
The Data Center Coalition, another big tech trade group representing many key players in the data center industry, emphasized throughout their comment that any reform to interconnection should still allow data centers to simply connect to the grid, without requiring or unduly favoring “hybrid” or co-location approaches.
“Timely, predictable, and nondiscriminatory access to interconnection service for stand-alone load is… critical… to the continued functioning of the market itself,” the Data Center Coalition wrote.
The hyperscalers themselves largely echoed this message, albeit with some differences in emphasis. They did not want any of their existing arrangements — which have allowed breakneck data center development — to be disrupted or to be forced into operating their data centers in any particular fashion.
Microsoft wrote that it was in favor of “voluntarily curtailable loads,” but cautioned that “most data centers today have limited curtailment capability,” and worried about “operational reliability risks.” In short, don’t railroad us into something our data centers aren’t really set up to do.
OpenAI wrote a short comment, likely its first ever appearance in a FERC docket, where it argued for “an optional curtailable-load pathway” that would allow for faster interconnection, echoing comments it had made in a letter to the White House.
Meta, meanwhile, argued against any binding rule at all, saying instead that FERC “should consider adopting guidance, best practices, and, if appropriate, minimum standards for large load interconnection rather than promulgating a binding, detailed rule.” After all, its deploying data centers gigawatts at a time and has been able to reach deals with utilities to secure power.
The Generators
Perhaps the most fulsome support for the broadest version of the DOE’s proposal came from the generators. The Electrical Power Supply Association, an independent power producer trade group, wrote that more standardized, transparent “rules of the road” are needed to allow large loads like data centers “to interconnect to the transmission system efficiently and fairly, and to be able to do so quickly.” It also called on FERC to speed up its reviews of interconnection requests.
Constellation, which operates a 32-gigawatt generation fleet with a large nuclear business, said that it “agrees with the motivations and principles outlined in the [Department of Energy’s proposal] and the need for clear rules to allow the timely interconnection of large loads and their co-location with generators.” It also called for faster implementation of large load interconnection principles in PJM, the nation’s largest electricity market, “where data center development has been stymied by disagreements and uncertainty over who controls the timing and nature of large load interconnections, and over the terms of any ensuing transmission service.” Constellation specifically called out utilities for excessive influence over PJM rulemaking and procedures.
Constellation’s stance shouldn’t be surprising, Peskoe told me. From the perspective of independent power producers, enabling data centers to quickly and directly work with regional transmission organizations and generators to come online is “generally going to be better for the generators,” Peskoe said, while utilities “want to be the gatekeeper.”
In the end, the fight over data center interconnection may not have much to do with data centers — it’s just one battle after another between generators and utilities.
The senator spoke at a Heatmap event in Washington, D.C. last week about the state of U.S. manufacturing.
At Heatmap’s event, “Onshoring the Electric Revolution,” held last week in Washington, D.C. every guest agreed: The U.S. is falling behind in the race to build the technologies of the future.
Senator Catherine Cortez Masto of Nevada, a Democrat who sits on the Senate’s energy and natural resources committee, expressed frustration with the Trump administration rolling back policies in the Inflation Reduction Act and Infrastructure Investment and Jobs Act meant to support critical minerals companies. “If we want to, in this country, lead in 21st century technology, why aren’t we starting with the extraction of the critical minerals that we need for that technology?” she asked.
At the same time, Cortez Masto also seemed hopeful that the Senate would move forward on both permitting and critical minerals legislation. “After we get back from the Thanksgiving holiday, there is going to be a number of bills that we’re looking at marking up and moving through the committee,” Cortez Masto said. That may well include the SPEED Act, a permitting bill with bipartisan support that passed the House Natural Resources Committee late last week.
Friction in the permitting of new energy and transmission projects is one of the key factors slowing down the transition to clean energy — though fossil fuel companies also have an interest in the process.
Thomas Hochman, the Foundation of American Innovation’s director of infrastructure policy, talked about how legislation could protect energy projects of all stripes from executive branch interference.
“The oil and gas industry is really, really interested in seeing tech-neutral language on this front because they’re worried that the same tools that have been uncovered to block wind and solar will then come back and block oil and gas,” Hochman said.
While permitting dominated the conversation, it was not the only topic on panelists’ minds.
“There’s a lot of talk about permitting,” said Michael Tubman, the senior director of federal affairs at Lucid Motors. “It’s not just about permits. There’s a lot more to be done. And one of those important things is those mines have to have the funding available.”
Michael Bruce, a partner at the venture capital firm Emerson Collective, thinks that other government actions, such as supporting domestic demand, would help businesses in the critical minerals space.
“You need to have demand,” he said. “And if you don’t have demand, you don’t have a business.”
Like Cortez Masto, Bruce lamented the decline of U.S. mining in the face of China’s supply chain dominance.
“We do [mining] better than anyone else in the world,” said Bruce. “But we’ve got to give [mining companies] permission to return. We have a few [projects] that have been waiting for permits for upwards of 25 years.”