Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

What’s Even Better Than Building New Wind Farms?

Enter “repowering.”

Wind turbines.
Heatmap Illustration/Getty Images

It’s not easy to build a wind project. Many of the best spots for generating wind power are already occupied by turbines. Even if you do find a good one, then comes everything else — inflation in the supply chain, convincing a local community that they want a wind farm near them, leasing the land, and so on and so forth. The whole process can take as long as five years.

But what about just making an existing wind farm … better.

This option, known as repowering, is becoming more attractive to wind developers and operators as existing wind assets age — operators get a more efficient wind farm, and developers get to avoid the many headaches of starting from scratch. The topic came up Tuesday, in fact, at the American Council on Renewable Energy’s 2024 Finance Forum. There are “some real opportunities for repower,” said David Giordano, BlackRock’s global head of climate infrastructure, on a panel about scaling capital to meet demand growth for renewables.

“When you repower a project, oftentimes you can utilize some of the existing infrastructure. And that means that you can add new equipment without the full cost of a greenfield development,” Eric Lantz, director of the Wind Energy Technologies Office at the Department of Energy, explained to me. When you install more modern equipment, he said, “you have higher hub heights, you have larger rotors — you can capture more energy from that site.”

Even if you tear down everything and rebuild from the ground up, Lantz told me, repowering still means you can use the existing transmission and interconnection, meaning developers can get more generation without having to deal with infamously long interconnection queues, which can impose yet more years on the energy development timeline.

Lantz collaborated on a 2020 research paper with a trio of Danish wind researchers (Denmark has one of the largest and most advanced wind power industries in the world) and found that from 2012 to 2019, 38% of all wind energy development projects in the country involved replacing old equipment as opposed to building on new sites. Repowering can be attractive to both developers and local communities, the researchers explained, because larger and more efficient turbines can actually reduce the net number of turbines on a given site while generating the same or even more power, with less visual disruption and less maintenance required.

Last year, Wood Mackenzie estimated that repowering onshore wind assets would lead to more installed capacity than new offshore wind in 2025 and 2026. In 2022, the U.S. repowered 1.7 gigawatts of wind plants, mostly by upgrading rotors (blades) and nacelle components like gearboxes and generators, upping their total capacity to 1.8 gigawatts, according to the Department of Energy. Average rotor diameter increased from 93 meters to 112 meters, adding on about the length of an 18-wheeler to the typical rotor.

Repowering has been a favored strategy of some of the biggest renewable developers, who have large and aging fleets of wind turbines that often already occupy prime spots. At the massive Shepherds Flat site in Oregon, for instance, Brookfield Renewable Partners replaced more than 300 turbines — i.e. over 900 blades — with new ones that were about 90 feet longer, upping the site’s total generation by some 20%.

At a proposed repowering in Southern California, Brookfield wants to replace around 450 turbines with just eight, while a New York repowering increased generation by almost 30% “while maintaining the same number of units to minimize ground disturbance,” the company said.

The rationale for repowering, like everything in energy, is a mixture of mechanical and financial. Over time, wind turbines tend to degrade, with actual power generation falling off. Even just by restoring a wind farm’s initial generating capacity, repowering can increase output, with newer, more advanced equipment, capacity can notably increase. And when renewable developers have to answer to investors, that cheaper generation can look quite attractive.

The energy developer NextEra plans to repower 1.4 gigawatts of its wind projects through 2026, the company’s chief financial officer said in an April earning call, and in January said that it had repowered a quarter of its existing 24 megawatts of wind. At that time, NextEra chief executive John Ketchum told analysts that the cost had been “roughly 50% to 80% of the cost of a new build and starting a new 10 years of production tax credits, resulting in attractive returns for shareholders.”

“With over a decade to potentially qualify for repowering,” he added, “it represents a great opportunity set.”

Looking at wind projects from before and after 2012, Scott Wilmot, an executive vice president at Enverus Intelligence Research, calculated that average capacity factor increased from around 30% to around 40%. “Swapping new equipment right off the bat, you can get a plus-10 percentage point gain on capacity factor,” he told me.

And then there’s the tax incentives. Repowering “resets” the production tax credit that’s the lifeblood of the wind industry, allowing owners and developers to claim it for another 10 years. When Enverus looked at a hypothetical project that had been operational since 2011 and repowered in 2023, it was possible that its production tax credit for an additional 10 years could increase from $22 per megawatt to almost $28. “It really does make the economics look quite attractive,” he told me.

“If you can get close to 10 percentage point capacity factor gain, you blow pretty much any greenfield, new build project out of the water.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Trump Wants to Prop Up Coal Plants. They Keep Breaking Down.

According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.

Donald Trump as Sisyphus.
Heatmap Illustration/Getty Images

The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.

This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.

Keep reading...Show less
Blue
Spotlight

The New Transmission Line Pitting Trump’s Rural Fans Against His Big Tech Allies

Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.

Donald Trump, Maryland, and Virginia.
Heatmap Illustration/Getty Images

A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.

The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.

Keep reading...Show less
Yellow
Hotspots

Trump Punished Wind Farms for Eagle Deaths During the Shutdown

Plus more of the week’s most important fights around renewable energy.

The United States.
Heatmap Illustration/Getty Images

1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.

  • On November 3, Fox News published a story claiming it had “reviewed” a notice from the Fish and Wildlife Service showing that it had proposed fining Orsted more than $32,000 for dead bald eagles that were discovered last year at two of its wind projects – the Plum Creek wind farm in Wayne County and the Lincoln Land Wind facility in Morgan County, Illinois.
  • Per Fox News, the Service claims Orsted did not have incidental take permits for the two projects but came forward to the agency with the bird carcasses once it became aware of the deaths.
  • In an email to me, Orsted confirmed that it received the letter on October 29 – weeks into what became the longest government shutdown in American history.
  • This is the first action we’ve seen to date on bird impacts tied to Trump’s wind industry crackdown. If you remember, the administration sent wind developers across the country requests for records on eagle deaths from their turbines. If companies don’t have their “take” permits – i.e. permission to harm birds incidentally through their operations – they may be vulnerable to fines like these.

2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.

Keep reading...Show less
Yellow