Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Culture

How a Top Climate Scientist Learned to Speak Up

Stanford’s Rob Jackson discusses methane, the “my-ocene,” and his new book, Into the Clear Blue Sky.

Earth in the clouds.
Heatmap Illustration/Getty Images

Mornings are my time for thinking about Rob Jackson — specifically, when I am making coffee. Every time I reach for the knob on my gas stove to heat my water kettle, I remember something he told me during our discussion of his new book, Into the Clear Blue Sky: The Path to Restoring Our Atmosphere: “We would never willingly stand over the tailpipe of a car breathing in the exhaust, yet we willingly stand over a stove, breathing the exact same pollutants.”

Mornings, incidentally, are also my time for practicing holding my breath.

Jackson is the chair of the Global Carbon Project, a professor of Earth science and a senior fellow at Stanford University’s Woods Institute for the Environment and Precourt Institute for Energy, as well as one of the most highly-cited climate and environmental scientists in the world — all a long way of saying, he spends a lot of time thinking about kitchens and neighborhoods just like mine. But emissions aren’t the only thing that occupies Jackson’s time these days; while he stresses that reducing emissions is still the “cheapest, safest, and only sure path to a safe climate,” his book also reluctantly examines technologies that remove greenhouse gases from the atmosphere after they’ve been emitted. “In truth, I’m frustrated … because we shouldn’t need them,” he explains.

Ahead of the release of Into the Clear Blue Sky on July 30, I spoke with Jackson about why it’s so difficult to make people care about atmospheric restoration in the same way they care about habitat loss or extreme weather, and the stories, people, and emerging technologies that do make him hopeful. Our conversation has been lightly edited and condensed for clarity.

In the introduction to Into the Clear Blue Sky, you write that restoring the atmosphere “must invoke the same spirit and philosophy used to restore endangered species and habitats to health.” But unlike with polar bears or glaciers, we usually can’t see the damage to the atmosphere. Do you think that is part of why we’ve been so slow and halting in addressing greenhouse gas pollution?

A little bit, I do. I think the real reason we’ve been slow to address greenhouse gas pollution is because we are better at just continuing with the status quo. We aren’t making changes in our lifestyles and our industries. I’ve grown skeptical that people will respond to climate thresholds like 1.5 [degrees Celsius of warming] or 2 C. People don’t really understand why those numbers are important — they don’t understand what they mean in paleo-time, in terms of sea level rise and ice melt. I’m seeking a different motivator, a different narrative for change. And I think restoration is a more powerful narrative than some arbitrary temperature number.

There are several moments in the book where you suggest that decarbonization has benefits beyond just addressing climate change — like how feeding cows red seaweed accelerates their weight gain, or how electric motorcycles don’t have the fumes, vibrations, or noise of gas-powered motorcycles. Do you think we need to market green technologies in ways that go beyond just cleaning up the atmosphere?

Yes. Approximately half the population in the United States isn’t motivated by concerns about climate change, and we have to reach them a different way. I strongly believe that climate solutions won’t just help our grandchildren; they’ll help make us healthier today, and ultimately help us save money.

Air pollution is the best example: Our air is cleaner today than when I was a boy. So is our water. But there are 100,000 Americans who still die from coal and car pollution every year in the United States, and one in five people worldwide — that’s 10 billion people a year who die from fossil fuel pollution. Those deaths are unnecessary and senseless. We have cleaner technologies available now. So if we can help people see that clean energy and climate solutions will restore our water and air, they might be more likely to say, “Okay, let’s give it a try.”

CO2 and methane are the big villains of the book, but I noticed that you don’t tangle with nitrous oxide too much. Was there any thinking behind that decision?

The problem with nitrous oxide is there are fewer things that we can do to reduce emissions. The number one source of nitrous oxide pollution — which causes about 10% of global warming, it’s not a trivial amount — is nitrogen fertilization for our crops. It’s a very complicated discussion when you get into growing food for people around the world, especially in poor countries, and climate change caused by resource consumption in richer countries. The issues are more complicated, and the solution set is smaller.

In your chapter about hydrogen — which you express some doubts about — you say it’s not your job as a scientist to “pick winners and losers.” I’m curious about these moments of tension between your personal opinions and your position as a scientist. When do you speak up, and when do you choose to stand back?

I wish I had a perfect answer to that. I speak more often now than I did earlier in my career. I feel that we’ve run out of time. There’s more urgency today. I feel like I no longer have the luxury of just letting the data speak. I want to try to help people understand the available solutions and the things that we can do individually and systematically.

To succeed in the fight against climate change, we will, I think, need to accept solutions that are not our favorites. And that’s a difficult message. People tend to fight everything they’re not 100% happy with, but the climate is not going to be fixed by any single solution.

The part of your book that made me the most anxious was the chapter about methane leaks, where you’re driving around Boston taking air samples and having the methane sensors go off all over the place. It also reminds me of the chapter on indoor air pollution and how many of these forms of pollution are so passive — like methane quietly leaking into our homes or up from under our streets.

The city home work has been really interesting, and it’s consumed a lot of recent years of my life — much more than I expected it to. And yet the biggest surprise of our methane work in the homes was how slow but consistent leaks from appliances like stoves and the pipes in people’s walls produced more pollution than the methane that leaked when the appliances were on. And that’s because the appliance might be on for an hour a day, but for 23 hours a day, the slow bleed of methane continues to the atmosphere.

It isn’t passive, though. The pollutants we document include NOx gases that trigger asthma. Benzene, formed in flames, is a carcinogen. We would never willingly stand over the tailpipe of a car breathing in the exhaust, yet we willingly stand over a stove, breathing the exact same pollutants, day after day, meal after meal, year after year.

Your book takes readers to many places worldwide. Is there any one project or organization that stands out to you as particularly exciting or crucial?

I very much enjoyed learning about green steel manufacturing. The chapter that I enjoyed the most, though, was the trip to Finland [to see the work of the Snowchange Cooperative, a landscape restoration group]. What I liked about that project, first of all, was seeing people taking matters into their own hands and working for solutions. But what was so interesting for me was the idea of “rewilding,” in the European sense — they’re not interested in trying to recreate an exact replica of something that was present in 1900. They’re trying to restore a functioning ecosystem that will still be there in 100 years. It’s a beautiful sight and the message was very moving for me.

The book vacillates between optimism and a kind of wary realism. I think that’s kind of the conundrum of climate activists on the whole, but is it something you have thoughts about? Do you want readers to come away hopeful, or are you hoping this galvanizes action, too?

That duality, that tension, is deeply rooted in me, and perhaps many people who care about climate and environment. I study the Earth for a living; I see the changes happening not just year to year but decade to decade from now. And you can’t help but be discouraged about the lack of progress.

But on the other hand, I talk to students about how optimism and hope are muscles we can exercise. My first homework assignment in every class is for students to find things that are better today than they were 50 or 100 years ago. That list is long: life expectancy and childhood mortality; water and air quality; the decline of global poverty despite all the injustices that remain. Then there are many specific examples, like the phase-out of leaded gasoline, the Montreal Protocol, and my favorite example, the U.S. Clean Air Act, which saves hundreds of thousands of lives a year at a 30-fold return on investment, so workers are healthier and more productive. We all breathe easier and pay lower medical expenses from air pollution. So I talk to students about how it’s important to acknowledge past successes; by doing so, we make future successes, such as climate, more likely.

Are there any last thoughts about your book that you want to leave readers with?

In the book, I tend to emphasize technologies — maybe to a fault. We don’t talk enough about reducing consumption and demand. The world is deeply unequal in terms of resource use and pollution.

I’m obviously a nerdy guy, and I talk about how we’re in the “myocene” — the my-ocene — the era when the top 1% of the world’s population contributes more fossil carbon emissions than half the people on Earth. The world cannot support the global population at the levels of resource use that we have in the United States right now. Either we need to reduce our energy use and consumption somewhat, or those other people in those other countries will aspire to be like us and they’ll produce and use more.

One example is cars: if everyone in the world owned cars at the rate we do, there would be 7 billion cars instead of about 1.5 billion. And I don’t care whether those cars are EVs or hydrogen vehicles or whatever; the world would not be a more sustainable and richer place with 5 billion more cars on it. We need to talk about using less in this country, not just building new things.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate

AM Briefing: SCOTUS Greenlights Federal Firings

On federal layoffs, copper tariffs, and Texas flood costs

SCOTUS Greenlights Federal Firings
Heatmap Illustration/Getty Images

Current conditions: Three people were killed in southern New Mexico after heavy rains on Tuesday caused floodingParts of the western Mediterranean Sea are 12.6 degrees Fahrenheit warmer than averageSearch operations are underway for 30 people missing in India’s Himachal Pradesh state following flash floods and landslides.

THE TOP FIVE

1. Supreme Court allows Trump administration to proceed with mass reduction of federal workforce

The Supreme Court on Tuesday lifted a lower court ruling that had blocked mass layoffs of federal workers, clearing the way for a significant reduction in the civil service. Justice Ketanji Brown Jackson was the only dissenting vote, writing that the court had a “demonstrated enthusiasm for greenlighting this President’s legally dubious actions in an emergency posture.” Technically, SCOTUS’ ruling is only temporary, and the case could eventually return for the court to consider at a later date, with Justice Sonia Sotomayor noting, “The plans themselves are not before this Court, at this stage, and we thus have no occasion to consider whether they can and will be carried out consistent with the constraints of law.” But “in practice,” the court’s move allows President Trump to “pursue his restructuring plans, even if judges later determine that they exceed presidential power,” The New York Times writes.

Keep reading...Show less
Yellow
Podcast

Shift Key Summer School: How Does a Power Plant Work?

Jesse and Rob go back to basics on the steam engine.

A power station.
Heatmap Illustration/Getty Images

Just two types of machines have produced the overwhelming majority of electricity generated since 1890. This week, we look at the history of those devices, how they work — and how they have contributed to global warming.

This is our second episode of Shift Key Summer School, a series of “lecture conversations” about the basics of energy, electricity, and the power grid for listeners of all backgrounds. This week, we dive into the invention and engineering of the world’s most common types of fossil- and nuclear-fueled power plants. What’s a Rankine cycle power station, and how does it use steam to produce electricity? How did the invention of the jet engine enable the rise of natural gas-generated electricity? And why can natural gas power plants achieve much higher efficiency gains than coal plants?

Keep reading...Show less
Yellow
Politics

Trump Opened a Back Door to Kill Wind and Solar Tax Credits

The Senate told renewables developers they’d have a year to start construction and still claim a tax break. Then came an executive order.

Trump burning a calendar.
Heatmap Illustration/Getty Images

Renewable energy advocates breathed a sigh of relief after a last-minute change to the One Big Beautiful Bill Act stipulated that wind and solar projects would be eligible for tax credits as long as they began construction within the next 12 months.

But the new law left an opening for the Trump administration to cut that window short, and now Trump is moving to do just that. The president signed an executive order on Monday directing the Treasury Department to issue new guidance for the clean electricity tax credits “restricting the use of broad safe harbors unless a substantial portion of a subject facility has been built.”

Keep reading...Show less