You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Whatever your motivation for buying an electric vehicle, here’s the thing: The first day you own one, you’re going to love it.
Forget the fears that come with a new technology, the negativity that stems from the politicization of EVs ownership, or the dead-and-buried stereotype that EVs are slow and boring rides for greenies only. Electric cars are zippy and fun because, unlike gas cars, they can produce a ton of torque from a resting stop. After a lifetime of listening to a car rattle and roar, I can say from experience that you’ll find driving in electric silence to be a revelation. An EV owner wakes up every morning with the equivalent of a full tank of gas because their home is their gas station.
Want a piece of this bliss? If so, then read on.
Brian Moody, an executive editor at Cox Automotive (which owns Kelly Blue Book) and an author specializing in transportation, automotive, and electric cars.
Joseph Yoon, consumer insights analyst for the automotive agency Edmunds.
Loren McDonald, CEO of EVAdoption, which provides data analysis and insights about the electrification of the car industry.
“That’s who the PHEV is for,” Moody told me. “You can do your errands around town with 30 to 40 miles, and when the battery runs out, you just keep driving.”
Ask nearly any EV expert and you’ll hear the same thing: “People don’t drive nearly as far as they think they do,” Moody said. Most of us put the vast majority of miles on our cars within a few dozen miles of our homes, running kids around town or driving to work. You’ll use up a small amount of your battery by the time you get home, plug in, and wake up the next day fully charged. Road trips may seem daunting to the uninitiated, but the interstates are now lined with fast-chargers and the number of them is growing quickly.
Building an EV generates more carbon emissions than building a gas car, a difference that’s due to mining and creating materials for the battery. But that’s just manufacturing a vehicle; once it’s built, it has a decade or two of driving ahead of it. A combustion car constantly spews carbon as it burns fossil fuels, which dwarfs the amount it takes to make an EV. Don’t forget: An electric car gets greener as the grid gets greener. The more clean energy is added to the world’s electrical supply, the better EVs get in comparison to gas cars. You’d need to live in a state with an especially dirty energy grid, such as Wyoming or West Virginia, for an EV not to be a much better option than driving around on gasoline. Furthermore, McDonald said, you can forget the propaganda that suggests EV batteries wind up stacked in a landfill somewhere when the cars meet their end. A growing number of companies are ready to recycle EV batteries and retrieve the precious metals therein, while it’s likely that lots of batteries will find a second life in applications such as grid storage.
It’s true that price has long been one of the biggest barriers to EV adoption. Even though tax incentives — together with savings on fuel and maintenance — make many electrics cost-competitive with their gas counterparts in the long term, their high sticker price keeps many people away. But more electric models are beginning to creep down toward the cost of entry-level gasoline cars.
As with buying an old-fashioned gas-guzzler, going to the dealership to get an EV means dealing with pushy salespeople, confusing specs, and haggling over the price. The process can be doubly frustrating for the EV shopper given the relative unavailability of some electric models and reports of some car salespeople who know frustratingly little about the very EVs they hock.
If you live in a market where EVs have taken hold, like the San Francisco Bay Area, expect knowledgeable salespeople who can walk you through the EV buying process. If you live someplace where few electrics are sold, then the experience may be hit-or-miss. Do your own research, and prepare to be your own advocate.
For a long time, things were simple: If you bought an electric vehicle, then you could take a $7,500 credit on your taxes for that year. But things have gotten murkier in the past year or two — in a bid to protect domestic manufacturing, Congress passed new rules stating that a certain amount of the car and its components had to be made in the U.S. to qualify, leaving a confusing, shifting picture of which EVs qualify and which don’t. (To wit: Many Teslas qualify, Hyundais and Kias don’t, while Rivians receive only half the credit because they’re so expensive.) The upside of the changed rules is that buyers are now allowed to get tax credits on leasing an EV, or to receive the credit as an up-front discount on their new EV. Many states have generous incentives, too. Washington, for example, will give up to $9,000 in rebates for buying an EV. “There are enormous discounts on basically every EV on the market, even before we count the $7,500 with the federal tax credit,” Yoon told me.
Before you take the plunge, take a moment and really think about how you drive — because lots of people overestimate what they need. Maybe even keep notes and check your mileage every day for a week or two to find out how much you really use the car versus how much you think you do. If you find that you could get around town on a few dozen miles of charge but road trip every other weekend, then you might consider a plug-in hybrid. If you’ve already got a gas car or hybrid to handle longer trips and are shopping for a second vehicle, there’s no reason not to go for an EV, assuming you can afford one. If you just need basic transportation to take you a few miles to work, hate the idea of ever buying gas again, and want to spend as little as possible … maybe you should get an e-bike.
A refresher: When you buy a car, you typically put a downpayment on the vehicle, and then borrow enough money from the bank to pay off the rest of its price (plus interest and sales tax) in monthly payments over the course of four, five, or even more years. Leasing is like renting an apartment. You put down a deposit and then pay monthly over the course of the lease, typically three years. But like your rent, those payments don't go toward owning the car. At the end of the lease, you give it back. With EVs especially, there are some serious advantages and drawbacks to each approach you should keep in mind.
If you live in a century-old house that would need to have significant rewiring done to accommodate an EV charger, then installing a Level 2 charger might be too expensive, so you might want to stick to a plug-in hybrid. (Again, more on charging below.) Does your office have a charger? If you live in an apartment, does the parking lot have chargers?
“How you refuel your EV is similar to how you charge your smartphone — you do it either throughout the day or at night before you go to bed. You plug in, you wake up, and it's full,” McDonald said.
“The first thing I tell people? You should probably get a Tesla,” Moody told me. Still, Elon Musk’s electric car company isn’t the darling it once was. Tesla has squandered a huge lead in the EV market by focusing on vanity projects like the Cybertruck and lost a chunk of public goodwill through Musk’s misadventures in politics and social media. But the company still has an ace up its sleeve with the Supercharger network, which is better and more reliable than the competition. This will change in the coming years, as the other automakers have adopted Tesla’s plug and their future cars will be able to use Superchargers. But for now, it’s a major advantage that makes owning a Tesla a lot less stressful than trying to get by with a competitor’s EV, especially if you make road trips. For this reason, Tesla’s Model Y — the best-selling car in the world in 2023, and the best-selling EV in America — remains a compelling choice for anyone who wants an EV to be their only car and have it go nearly anywhere.
Don’t want Musk to get your money? Fret not. EV offerings from legacy car companies and new automakers are leaps and bounds better than they were five years ago when Tesla took over the industry. Hyundai and its subsidiary Kia, in particular, have outpaced other carmakers in offering fun and practical EVs. The new Kia EV9 is the best choice for buyers who want a true EV with three rows so they can accommodate six or seven passengers, and it’s a sleek-looking vehicle for its size. Its $57,000 starting price is not cheap, but it’s probably the best deal you can get for a true three-row electric vehicle right now.
The Ioniq 5 is a quirky mashup of a crossover and a hatchback. It’s got enough space to be practical as a family vehicle, but its dimensions aren’t quite like anything else on the market. In the EV-laden part of Los Angeles where I live, it’s the most common non-Tesla electric I come across.
Introduced in 2021, the F-150 Lightning’s game-changing feature is two-way, or “bidirectional,” charging — you can plug into your house and use the energy stored in the truck’s battery to back up your home’s power supply in case of a blackout. Chevy is following suit by putting this tech into the Silverado EV. But even if you’re just driving and not powering your home, the Lightning is impressive — its standard battery produces 452 horsepower, but that number can climb to 580 on more expensive versions, and both offer a ton of torque.
Today’s Rivians are luxury lifestyle vehicles, but they offer a lot for all that cash. The R1 vehicles are spacious and well-appointed on the interior while offering lots of power and range for the off-road lifestyle the brand projects — the high-end version of the SUV gets 410 miles of range with 665 horsepower. Other excellent luxury EVs at the top end of the market include the Lucid Air and Mercedes EQS, but the Air has the space limitations of a sedan (though it is a large one) and the Benz is likely to cost more than $100,000. Rivians are pricey, but they’re not that pricey.
The people’s affordable EV champion, the Chevy Bolt, got the ax last year, but GM has promised to bring it back for people who want a smallish EV that doesn’t cost a fortune. In the meantime, the “SE” version of the Hyundai Kona EV, a small SUV, starts around $36,000 and gets 261 miles of range. (There’s an even cheaper version with 200 miles of range, but trust me: Don’t buy any new EV with less than 250 miles of range — e.g. the Nissan Leaf, Fiat 500, Mini Cooper, or Subaru Solterra — unless you really, really like it.) Chevy finally electrified its huge-selling SUV and rolled out the Equinox EV; while it starts at $41,000 now, GM promises a $35,000 version soon to come.
There are a wide variety of PHEVs that are worth a look, but an especially compelling option is the Toyota Prius Prime. The entire Prius family of hybrids and plug-in hybrids just got a facelift for 2023 that is miles ahead of the frumpy, aging look the car previously had. And where the previous Prius Prime was limited to a puny 25 miles of electric range, today’s will do 44 — enough for lots of people to do their daily city driving without burning any gas.
Some vocabulary to get you started:
Since charging at home is the make-or-break feature that will make your electrified life more convenient than your gas-burning days, your first order of business is getting a Level 2 charger installed. You’re going to need an electrician for this one, since it requires stepping up the voltage (and might require installing a new breaker panel or running new wiring, depending upon your home). Be sure to get multiple quotes so you can compare work estimates and prices.
“When you buy from an EV dealer or Tesla or whomever, they might refer you to an electrician or an installer. There are companies that have services and websites where they do all the work for you. You plug in your address and information, and they'll recommend and refer you to an installer,” McDonald said.
How much this’ll cost you varies by where you live and how much work it’ll take to set up your home, but the national average is $1,200 to $1,500, McDonald says. The exception could be older houses that were not set up for anything close to the electrical load it takes to charge a car, so if you own a hundred-year-old home in New England with lots of original wiring, you might be in for a shock. Don’t forget, however, that lots of incentives are available for setting up EV infrastructure at your home. You might be eligible for a tax credit equal to 30 percent of the cost up to $1,000.
As far as charging away from home? Most EVs automatically show nearby charging stations on their touchscreen navigation systems and will route you to the necessary stops along a long drive. Teslas will even show you how many stalls are available at a given Supercharger and how many other cars are en route. As an EV driver, you’ll get to know the fast-chargers in your neighborhood and along your familiar highways, but you’ll also get to know sites like Plugshare that will display every charger of every speed and every plug throughout that country — invaluable for planning a journey.
As you get comfortable with your own driving habits, you’ll figure out whether you need to expand your choices by purchasing adapters or dongles that let your car charge at different kinds of plugs. For example, today’s non-Tesla EVs eventually will be able to charge at Tesla superchargers, but because they are still being built with the competing CCS standard, you’d need an adapter to allow today’s Ford Mustang Mach-E to use a Tesla plug. I have an adapter in my Tesla Model 3 to use the “J1772” plugs you find on the Level 2 charger at the grocery store, and I bought one for the NEMA 14-50 plugs common at an RV campsite — just in case I really get into trouble out there.
When a car brakes to slow down, energy is lost. But in an EV, some of it can be recaptured via regenerative braking, a system that captures the energy from waste heat and puts it back into the battery. This allows for an experience unavailable to the gasoline motorist called one-pedal driving: Take your foot off the accelerator and the car immediately slows itself down via the regenerative braking system. When I drive my Tesla Model 3, I only hit the brake pedal when I need to slow down in a big hurry; otherwise, I let off the accelerator and let the car coast to a stop. This system can add several miles of range back onto the battery if you’re coasting out of the mountains on a steep downgrade.
A word of warning: Many people don’t like regenerative braking, at least at first, because it feels jerky to have the car instantly slow itself down when you let off the accelerator. But trust me, you’ll get better and better at letting off the pedal slowly so you don’t make your passengers nauseous. It’s also possible in many vehicles to turn down the regen so it’s less aggressive.
For starters, think of all the car vocabulary you won’t need anymore. An EV’s power output can be measured in torque and horsepower, but say goodbye to combustion-specific vernacular like spark plugs, cylinders, pistons, or liters as a measure of engine size (unless you get a plug-in hybrid). No more mufflers, no exhaust or timing belts. An EV has no use for miles per gallon, though carmakers and the EPA try to measure an electric car’s efficiency in miles per gallon equivalent as a way to compare them with gas cars.
As the months and years go by, you’ll appreciate a number of differences in the EV owner’s lifestyle. Drivers needn’t bother with remembering the pesky oil change every 3,000 miles, nor with worrying about the lifespans of thousands of moving parts that come with internal combustion. (On the other hand, today’s EVs burn through tires faster than gas cars do because of their weight and their performance.)
There’s a lot more to learn, of course. Just remember: The first time you bypass the gas station — with its stinky fumes and pesky commercials screaming at you — to refuel your car in the comfort of your home, you’ll wonder why you waited so long.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.
The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.
Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.
The company’s CEO, Kunal Girotra, founded Lunar Energy in the summer of 2020 after leaving his job as head of Tesla Energy, which makes the Tesla Powerwall battery for homeowners and the Megapack for grid-scale storage. As he put it, back then, “everybody was focused on either building the next best electric car or solving problems for the grid at a centralized level.” But he was more interested in what was happening with households as home battery costs were declining. “The vision was, how can we get every home a battery system and with smart software, optimize that for dual benefit for the consumer as well as the grid?”
VPPs work by linking together lots of small energy resources. Most commonly, this includes solar, home batteries, and appliances that can be programmed to adjust their energy usage based on grid conditions. These disparate resources work in concert conducted by software that coordinates when they should charge, discharge, or ramp down their electricity use based on grid needs and electricity prices. So if a network of home batteries all dispatched energy to the grid at once, that would have the same effect as firing up a fossil fuel power plant — just much cleaner.
Lunar’s artificial intelligence-enabled home energy system analyzes customers’ energy use patterns alongside grid and weather conditions. That allows Lunar’s battery to automatically charge and discharge at the most cost-effective times while retaining an adequate supply of backup power. The batteries, which started shipping in California last year, also come integrated with the company’s Gridshare software. Used by energy companies and utilities, Gridshare already manages all of Sunrun’s VPPs, including nearly 130,000 home batteries — most from non-Lunar manufacturers — that can dispatch energy when the grid needs it most.
This accords with Lunar’s broader philosophy, Girotra explained — that its batteries should be interoperable with all grid software, and its Gridshare platform interoperable with all batteries, whether they’re made by Lunar or not. “That’s another differentiator from Tesla or Enphase, who are creating these walled gardens,” he told me. “We believe an Android-like software strategy is necessary for the grid to really prosper.” That should make it easier for utilities to support VPPs in an environment where there are more and more differentiated home batteries and software systems out there.
And yet the real-world impact of VPPs remains limited today. That’s partially due to the main problem Lunar is trying to solve — the technical complexity of coordinating thousands of household-level systems. But there are also regulatory barriers and entrenched utility business models to contend with, since the grid simply wasn’t set up for households to be energy providers as well as consumers.
Girotra is well-versed in the difficulties of this space. When he first started at Tesla a decade ago, he helped kick off what’s widely considered to be the country’s first VPP with Green Mountain Power in Vermont. The forward-looking utility was keen to provide customers with utility-owned Tesla Powerwalls, networking them together to lower peak system demand. But larger VPPs that utilize customer-owned assets and seek to sell energy from residential batteries into wholesale electricity markets — as Lunar wants to do — are a different beast entirely.
Girotra thinks their time has come. “This year and the next five years are going to be big for VPPs,” he told me. The tide started to turn in California last summer, he said, after a successful test of the state’s VPP capacity had over 100,000 residential batteries dispatching more than 500 megawatts of power to the grid for two hours — enough to power about half of San Francisco. This led to a significant reduction in electricity demand during the state’s evening peak, with the VPP behaving just like a traditional power plant.
Armed with this demonstration of potential and its recent influx of cash, Lunar aims to scale its battery fleet, growing from about 2,000 deployed systems today to about 10,000 by year’s end, and “at least doubling” every year after that. Ultimately, the company aims to leverage the popularity of its Gridshare platform to become a market maker, helping to shape the structure of VPP programs — as it’s already doing with the Community Choice Aggregators that it’s partnered with so far in California.
In the meantime, Girotra said Lunar is also involved in lobbying efforts to push state governments and utilities to make it easier for VPPs to participate in the market. “VPPs were always like nuclear fusion, always for the future,” he told me. But especially after last year’s demonstration, he thinks the entire grid ecosystem, from system operators to regulators, are starting to realize that the technology is here today. ”This is not small potatoes anymore.”
If all the snow and ice over the past week has you fed up, you might consider moving to San Francisco, Los Angeles, Phoenix, Austin, or Atlanta. These five cities receive little to no measurable snow in a given year; subtropical Atlanta technically gets the most — maybe a couple of inches per winter, though often none. Even this weekend’s bomb cyclone, which dumped 7 inches across parts of northeastern Georgia, left the Atlanta suburbs with too little accumulation even to make a snowman.
San Francisco and the aforementioned Sun Belt cities are also the five pilot locations of the all-electric autonomous-vehicle company Waymo. That’s no coincidence. “There is no commercial [automated driving] service operating in winter conditions or freezing rain,” Steven Waslander, a University of Toronto robotics professor who leads WinTOR, a research program aimed at extending the seasonality of self-driving cars, told me. “We don’t have it completely solved.”
Snow and freezing rain, in particular, are among the most hazardous driving conditions, and 70% of the U.S. population lives in areas that experience such conditions in winter. But for the same reasons snow and ice are difficult for human drivers — reduced visibility, poor traction, and a greater need to react quickly and instinctively in anticipation of something like black ice or a fishtailing vehicle in an adjacent lane — they’re difficult for machines to manage, too.
The technology that enables self-driving cars to “see” the road and anticipate hazards ahead comes in three varieties. Tesla Autopilot uses cameras, which Tesla CEO Elon Musk has lauded for operating naturally, like a human driver’s eye — but they have the same limitations as a human eye when conditions deteriorate, too.
Lidar, used by Waymo and, soon, Rivian, deploys pulses of light that bounce off objects and return to sensors to create 3D images of the surrounding environment. Lidar struggles in snowy conditions because the sensors also absorb airborne particles, including moisture and flakes. (Not to mention, lidar is up to 32 times more expensive than Tesla’s comparatively simple, inexpensive cameras.) Radar, the third option, isn’t affected by darkness, snow, fog, or rain, using long radio wavelengths that essentially bend around water droplets in the air. But it also has the worst resolution of the bunch — it’s good at detecting cars, but not smaller objects, such as blown tire debris — and typically needs to be used alongside another sensor, like lidar, as it is on Waymo cars.
Driving in the snow is still “definitely out of the domain of the current robotaxis from Waymo or Baidu, and the long-haul trucks are not testing those conditions yet at all,” Waslander said. “But our research has shown that a lot of the winter conditions are reasonably manageable.”
To boot, Waymo is now testing its vehicles in Tokyo and London, with Denver, Colorado, set to become the first true “winter city” for the company. Waymo also has ambitions to expand into New York City, which received nearly 12 inches of snow last week during Winter Storm Fern.
But while scientists are still divided on whether climate change is increasing instances of polar vortices — which push extremely cold Arctic air down into the warmer, moister air over the U.S., resulting in heavy snowfall — we do know that as the planet warms, places that used to freeze solid all winter will go through freeze-thaw-refreeze cycles that make driving more dangerous. Freezing rain, which requires both warm and cold air to form, could also increase in frequency. Variability also means that autonomous vehicles will need to navigate these conditions even in presumed-mild climates such as Georgia.
Snow and ice throw a couple of wrenches at autonomous vehicles. Cars need to be taught how to brake or slow down on slush, soft snow, packed snow, melting snow, ice — every variation of winter road condition. Other drivers and pedestrians also behave differently in snow than in clear weather, which machine learning models must incorporate. The car itself will also behave differently, with traction changing at critical moments, such as when approaching an intersection or crosswalk.
Expanding the datasets (or “experience”) of autonomous vehicles will help solve the problem on the technological side. But reduced sensor accuracy remains a big concern — because you can only react to hazards you can identify in the first place. A crust of ice over a camera or lidar sensor can prevent the equipment from working properly, which is a scary thought when no one’s in the driver’s seat.
As Waslander alluded to, there are a few obvious coping mechanisms for robotaxi and autonomous vehicle makers: You can defrost, thaw, wipe, or apply a coating to a sensor to keep it clear. Or you can choose something altogether different.
Recently, a fourth kind of sensor has entered the market. At CES in January, the company Teradar demonstrated its Summit sensor, which operates in the terahertz band of the electromagnetic spectrum, a “Goldilocks” zone between the visible light used by cameras and the human eye and radar. “We have all the advantages of radar combined with all the advantages of lidar or camera,” Gunnar Juergens, the SVP of product at Teradar, told me. “It means we get into very high resolution, and we have a very high robustness against any weather influence.”
The company, which raised $150 million in a Series B funding round last year, says it is in talks with top U.S. and European automakers, with the goal of making it onto a 2028 model vehicle; Juergens also told me the company imagines possible applications in the defense, agriculture, and health-care spaces. Waslander hadn’t heard of Teradar before I told him about it, but called the technology a “super neat idea” that could prove to be a “really useful sensor” if it is indeed able to capture the advantages of both radar and lidar. “You could imagine replacing both with one unit,” he said.
Still, radar and lidar are well-established technologies with decades of development behind them, and “there’s a reason” automakers rely on them, Waslander told me. Using the terahertz band, “there’s got to be some trade-offs,” he speculated, such as lower measurement accuracy or higher absorption rates. In other words, while Teradar boasts the upsides of both radar and lidar, it may come with some of their downsides, too.
Another point in Teradar’s favor is that it doesn’t use a lens at all — there’s nothing to fog, freeze, or salt over. The sensor could help address a fundamental assumption of autonomy — as Juergen put it, “if you transfer responsibility from the human to a machine, it must be better than a human.” There are “very good solutions on the road,” he went on. “The question is, can they handle every weather or every use case? And the answer is no, they cannot.” Until sensors can demonstrate matching or exceeding human performance in snowy conditions — whether through a combination of lidar, cameras, and radar, or through a new technology such as Teradar’s Summit sensor — this will remain true.
If driving in winter weather can eventually be automated at scale, it could theoretically save thousands of lives. Until then, you might still consider using that empty parking lot nearby to brush up on your brake pumping.
Otherwise, there’s always Phoenix; I’ve heard it’s pleasant this time of year.
Current conditions: After a brief reprieve of temperatures hovering around freezing, the Northeast is bracing for a return to Arctic air and potential snow squalls at the end of the week • Cyclone Fytia’s death toll more than doubled to seven people in Madagascar as flooding continues • Temperatures in Mongolia are plunging below 0 degrees Fahrenheit for the rest of the workweek.
Secretary of the Interior Doug Burgum suggested the Supreme Court could step in to overturn the Trump administration’s unbroken string of losses in all five cases where offshore wind developers challenged its attempts to halt construction on turbines. “I believe President Trump wants to kill the wind industry in America,” Fox Business News host Stuart Varney asked during Burgum’s appearance on Tuesday morning. “How are you going to do that when the courts are blocking it?” Burgum dismissed the rulings by what he called “court judges” who “were all at the district level,” and said “there’s always the possibility to keep moving that up through the chain.” Burgum — who, as my colleague Robinson Meyer noted last month, has been thrust into an ideological crisis over Trump’s actions toward Greenland — went on to reiterate the claims made in a Department of Defense report in December that sought to justify the halt to all construction on offshore turbines on the grounds that their operation could “create radar interference that could represent a tremendous threat off our highly populated northeast coast.” The issue isn’t new. The Obama administration put together a task force in 2011 to examine the problem of “radar clutter” from wind turbines. The Department of Energy found that there were ways to mitigate the issue, and promoted the development of next-generation radar that could see past turbines.
The Trump administration, meanwhile, is facing accusations of violating the Constitution with its orders to keep coal-fired power stations operating past planned retirement. By mandating their coal plants stay open, two electrical cooperatives in Colorado said the Energy Department’s directive “constitutes both a physical taking and a regulatory taking” of property by the government without just compensation or due process, Utility Dive reported.
Back in December, the promise of a bipartisan deal on permitting reform seemed possible as the SPEED Act came up for a vote in the House. At the last minute, however, far-right Republicans and opponents of offshore wind leveraged their votes to win an amendment specifically allowing President Donald Trump to continue his attempts to kill off the projects to build turbines off the Eastern Seaboard. With key Democrats in the Senate telling Heatmap’s Jael Holzman that their support hinged on legislation that did the opposite of that, the SPEED Act stalled out. Now a new bipartisan bill aims to rectify what went wrong. The FREEDOM Act — an acronym for “Fighting for Reliable Energy and Ending Doubt for Open Markets” — would prevent a Republican administration from yanking permits from offshore wind or a Democratic one from going after already-licensed oil and gas projects, while setting new deadlines for agencies to speed up application reviews. I got an advanced copy of the bill Monday night, so you can read the full piece on it here on Heatmap.
One element I didn’t touch on in my story is what the legislation would do for geothermal. Next-generation geothermal giant Fervo Energy pulled off its breakthrough in using fracking technology to harness the Earth’s heat in more places than ever before just after the Biden administration completed work on its landmark clean energy bills. As a result, geothermal lost out on key policy boosts that, for example, the next-generation nuclear industry received. The FREEDOM Act would require the government to hold twice as many lease sales on federal lands for geothermal projects. It would also extend the regulatory shortcuts the oil and gas industry enjoys to geothermal companies.
Sign up to receive Heatmap AM in your inbox every morning:

Take a look at the above chart. In the United States, new gas power plants are surging to meet soaring electricity demand. At last count, two thirds of projects currently underway haven’t publicly identified which manufacturer is making their gas turbines. With the backlog for turbines now stretching to the end of the decade, Siemens Energy wants to grow its share of booming demand. The German company, which already boasts the second-largest order book in the U.S. market, is investing $1 billion to produce more turbines and grid equipment. “The models need to be trained,” Christian Bruch, the chief executive of Siemens Energy, told The New York Times. “The electricity need is going to be there.”
While most of the spending is set to go through existing plants in Florida and North Carolina, Siemens Energy plans to build a new factory in Mississippi to produce electric switchgear, the equipment that manages power flows on the grid. It’s hardly alone. In September, Mitsubishi announced plans to double its manufacturing capacity for gas turbines over the next two years. After the announcement, the Japanese company’s share price surged. Until then, investors’ willingness to fund manufacturing expansions seemed limited. As Heatmap’s Matthew Zeitlin put it, “Wall Street has been happy to see developers get in line for whatever turbines can be made from the industry’s existing facilities. But what happens when the pressure to build doesn’t come from customers but from competitors?” Siemens just gave its answer.
At his annual budget address in Harrisburg, Pennsylvania Governor Josh Shapiro touted Amazon’s plans to invest $20 billion into building two data center campuses in his state. But he said it’s time for the state to become “selective about the projects that get built here.” To narrow the criteria, he said developers “must bring their own power generation online or fully fund new generation to meet their needs — without driving up costs for homeowners or businesses.” He insisted that data centers conserve more water. “I know Pennsylvanians have real concerns about these data centers and the impact they could have on our communities, our utility bills, and our environment,” he said, according to WHYY. “And so do I.” The Democrat, who is running for reelection, also called on utilities to find ways to slash electricity rates by 20%.
For the first time, every vehicle on Consumer Reports’ list of top picks for the year is a hybrid (or available as one) or an electric vehicle. The magazine cautioned that its endorsement extended to every version of the winning vehicles in each category. “For example, our pick of the Honda Civic means we think the gas-only Civic, the hybrid, and the sporty Si are all excellent. But for some models, we emphasize the version that we think will work best for most people.” But the publication said “the hybrid option is often quieter and more refined at speed, and its improved fuel efficiency usually saves you money in the long term.”
Elon Musk wants to put data centers in space. In an application to the Federal Communications Commission, SpaceX laid out plans to launch a constellation of a million solar-powered data centers to ease the strain the artificial intelligence boom is placing on the Earth’s grids. Each data center, according to E&E News, would be 31 miles long and operate more than 310 miles above the planet’s surface. “By harnessing the Sun’s abundant, clean energy in orbit — cutting emissions, minimizing land disruption, and reducing the overall environmental costs of grid expansion — SpaceX’s proposed system will enable sustainable AI advancement,” the company said in the filing.