You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Can solar plus storage fix one of the thorniest problems of the energy transition?
To talk about renewable energy these days is to talk about power lines. “No transition without transmission” has become something of a mantra among a legion of energy wonks. And following the passage of the Inflation Reduction Act, which contains a massive pot of subsidies for non-carbon-emitting power but little in the way of delivering it, legislative and regulatory attention has turned to getting that power from where it’s sunny and windy to where it’s needed.
Hardly a day goes by in which some industry group or environmental nonprofit isn’t assaulting the inboxes of climate journalists like myself with another study or white paper stressing the need for more transmission. But I’ve also recently noticed a newer group of advocates popping up: the batterystans.
Now, virtually everyone in the renewable energy space loves talking about the massive growth and potential of batteries to store power generated by renewables for when it’s needed most. Here the Inflation Reduction Act’s honeypot of subsidies and the long economic trends are working together. The price of batteries really is falling dramatically, and their deployment has been ramped up.
For most people, batteries are a complement to transmission upgrades. But to a much smaller group, the falling prices of solar and batteries may obviate the need for transmission expansion entirely.
Let’s start with the more mild case. As Duncan Campbell, Vice President at Scale Microgrids told me, “If you go deep on power grid expansion modeling studies, they all assume an enormous build-out of transmission well beyond what we’ve done in the past and I think demonstrated to be well beyond the current institutional capacity.” In other words, you can pencil in as much transmission build-out as you want, but the chances we’ll actually do it seem at least short of certain. “It’s quite reasonable to suggest when doing something super ambitious that it’s a good idea to have a diversified approach,” he said.
That diversified approach, for Campbell, includes storage and generation both on the transmission part of the grid — like utility-scale storage paired with solar arrays — and on the distribution side of the grid, like rooftop solar and garage batteries. The latter two examples can also work together as a “virtual power plant” to modulate consumption based on when power is most expensive or cheap and even sometimes send power back to the grid at times of stress.
“At the end of the day it seems undeniably prudent to think about what solutions are going to complement large-scale transmission build-out if we want to meet these goals. Otherwise it’s a concentrated approach that carries a lot of risks,” Campbell told me. “Technologically, VPPs and DER [distributed energy resources] can help. Especially in those worst situations.”
This balanced approach would not actually face much opposition from advocates for a substantial transmission build-out, even if sometimes this “debate” — especially on Twitter, I’m sorry, especially on X — can get polarized and contentious.
“They’re complementary, not competitive,” Ric O’Connell, the executive director of GridLab, told me. “Transmission moves energy around in space, storage moves around in time. You need both.”
O’Connell pointed out that storage in some cases could be thought of a transmission asset, something analogous to the wires and poles that move electricity, where power could be moved on very short time frames to help out with extremely high levels of demand, a lack of generation, or transmission congestion. We’ve seen this already in Texas, where storage has helped take the bite out of extremely high demand recently, and in California, where it has helped alleviate the rapid disappearance of solar power every evening.
“The shorter duration storage stuff is working to address congestion and streamline transmission operations. In that sense you can put it in the same category as a grid enhancing technology,” O’Connell said.
While nearly everyone I talked to was eager to say that storage and transmission could complement each other, even if some leaned on transmission more and others were more bullish on storage and distributed energy, there was one person who actually did represent a clear and polarizing view: Casey Handmer.
Handmer is a Cal Tech trained physicist who used to write software for the Jet Propulsion Laboratory and founded Terraform Industries, an early stage start up that’s looking to develop the “Terraformer,” a solar-powered factory that would create synthetic natural gas. Immodestly, he “aims to displace the majority of fossil hydrocarbon production by 2035.”
More modestly, he describes himself as “effectively a puffed up blogger who runs a pre-revenue (i.e. default dead) startup in an area peripheral (at best) to grid issues,” but is nonetheless, again, immodestly “pretty confident that my analysis is correct,” he told me in an email.
“My views on this matter are unconventional, even controversial. Arguably this is my spiciest hot take on the future of energy,” he wrote on his blog.
He thinks that the falling price of solar and batteries will make large-scale transmission investments unnecessary.
The price declines in battery and solar will continue, allowing people and businesses to throw up solar wherever, pair it with batteries, to the point where solar is “5-15x” overbuilt. That would mean that solar wouldn’t need to be backed up by any kind of “clean firm” power, i.e. a source that can produce carbon-free electricity at any time, like nuclear power, pumped-hydro, green hydrogen, or natural gas with carbon capture and storage.
While extreme, his views are not so, so, so far off from other renewables maximalists, who view solar and battery price declines as essentially inexorable. If they’re right, resource adequacy issues (i.e. that it’s much more sunny in some places than others) could be overcome by just building more cheap solar and installing more batteries.
“Adding 12 hours of storage to the entire U.S. grid would not happen overnight, but on current trends would cost around $500 billion and pay for itself within a few years. This is a shorter timescale than the required manufacturing ramp, meaning it could be entirely privately funded. By contrast, upgrading the U.S. transmission grid could cost $7 trillion over 20 years,” Handmer wrote in July.
As for the case that transmission is needed to get solar power from where it’s sunnier (like southern Europe or the American Southwest) to where it isn’t (Northern Europe, the rest of America), Handmer argues this isn’t really a problem.
“Solar resource quality doesn't matter that much. Solar resource is much more evenly distributed than, say, oil,” he told me. “Almost all humans live close to where their grandparents were able to grow food to live, and crops only grow in places that are roughly equally sunny.” He also argued that “solar is about 1000x more productive in terms of energy produced per unit land used than agriculture,” so building it will be economically compelling in huge swathes of the world.
As he acknowledges, his view is pretty lonely. He seems to yada-yada away what developments in battery technology would be needed to make this all work (although presumably ever-cheapening solar could just charge more lithium-ion batteries). One estimate suggests that to have “the greatest impact on electricity cost and firm generation,” battery storage would have to extend out to 100 hours — about 25X more than they do now.
This is where I say what you’re already thinking. This combination of technofuturism, contrarianism, work experience in the space industry and comfort with back-of-the-envelope math to make strong assertions makes Handmer sound like — and I mean this in the most value-neutral, descriptive way possible — another proponent of the rooftop solar, home battery, electric car future: Elon Musk. (Handmer used to work at the Musk-inspired Hyperloop One).
When I asked him why he’s an admitted outlier on this, he chalked it up to “anchoring bias in the climate space ... before solar and batteries got cheap, analyses showed that increasing the size of the grid was the best way to counter wind intermittency. But when the assumptions and data change, the results change too. The future of electricity is local. As a physicist, I was trained to take unusual observations to their utmost conclusion.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.