You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why China’s slowdown is ominous for the West’s climate policy
Would it be easier to fight climate change if America was China’s ally, or even a neutral third party, rather than its growing rival?
For the past few years, this has been one of the great what-ifs of global climate policy. It’s also been somewhat moot because, well, America isn’t China’s ally. The United States would never have passed the Inflation Reduction Act if not for China’s perceived technological leadership (even if China also emits far more carbon pollution than America does).
But the question has persisted, and it has hinted at a larger one: How should a given country approach the energy transition? Should it try to assert itself by making some input to decarbonization, some necessary technology? Or should it simply allow China, the world’s factory, to sell it everything it needs to decarbonize?
For years, many countries — especially in Europe — have tried to walk a line between these two approaches, promising that decarbonization could lead to good jobs at home while avoiding outright protectionism. But recent events have rendered this dilemma less and less theoretical. As the Chinese economy slows, the world will have to decide how to handle its climate-friendly industries.
A brief backgrounder. China dominates the global clean-energy manufacturing industry. It makes 60% of the world’s electric car batteries and wind turbines. It manufactures 80% of its solar panels. By one measure, the Chinese automaker BYD became the world’s largest electric vehicle maker this year, outselling Tesla. Chinese companies are also able to make many of these products more cheaply and at a greater scale than those of other countries.
China also finds itself in an increasingly troublesome economic slowdown. Its working-age population has peaked, home prices have fallen, and consumer activity is moribund. Even as the rest of the world combats stubborn inflation, China has slipped into deflation.
Although China’s slowdown is being driven by a few factors, its core problem is structural. For the past few decades, China has grown its economy by juicing production on the supply side — the construction firms, steelmakers, real-estate developers, and (more recently) manufacturing sector. It invested heavily in infrastructure projects, laying more cement in three years than the United States made in the entire 20th century. This type of infrastructure spending is key to how local Chinese leaders generate economic growth on paper, meeting the national government’s GDP targets. It also helps them stay in power and sometimes enrich themselves.
This arrangement has suppressed worker wages and dampened consumer spending. China’s capital controls have also forced Chinese families to save in the places where the government wants them to. As Paul Krugman writes, that led first to a surge in global goods exports, then to a real-estate bubble, which popped a few years ago.
Faced with such a conundrum, most Western economists would recommend that the national government offer support directly to consumers and households — much like the American government did during the pandemic. That would help families repair their finances, which were damaged by the real-estate bubble, and give them the money and security to buy the products that Chinese factories manufacture. It would, in essence, continue the process of turning China into a consumer economy.
But China doesn’t seem to want to do that. Earlier this week, The Wall Street Journal reported that President Xi Jinping does not believe that China should provide direct fiscal support to consumers. Instead, he appears to believe that China should recover through austerity, fiscal discipline, and by increasing its support of its manufacturing and industrial sectors.
Xi and the men around him seem to hold a set of ideas that, in a Western context, we would see as an odd mix of the right and left. On the one hand, Xi is suspicious of “welfarism” and warns that China must avoid the mistakes of Latin America (as he understands them). On the other hand, Xi dislikes entrepreneurs — see here his treatment of Jack Ma — and is suspicious of what we would call the software industry.
China’s leaders also don’t want to give consumers more power in their economy for fear of disempowering the Communist Party, which is able to use its power over banks to shape the domestic economy. Private consumption makes up about 60% of the average country’s GDP. (In the U.S., it’s closer to 70%.) But in China, households consume less than 40% of GDP. But according to the Journal, Xi believes “China should address ‘insufficient effective supply capacity’ — in essence, build more factories and industry — so as not to become overly dependent on ‘overseas shopping’ for goods supplied by the West.”
One domestic industry that China’s leaders do like is the clean-energy industry, the hundreds of firms that make electric cars, batteries, renewables, and their constituent parts and ingredients. These companies not only generate a ton of exports — China became the world’s top car exporter this year, driven in part by the success of the electric-car maker BYD — but they are strategically useful, placing China at the center of the global energy transition while relieving it of its dependence on seaborne fossil-fuel imports.
And that is what concerns me. The Chinese government is planning a new burst of infrastructure and factory spending, according to the Journal, and it may also make it easier for certain government-favored firms and projects to borrow money. These measures don’t even need to directly target the clean-energy industry to help it: There are so many constraints on how and where investment happens in China that the money could flow into these green-energy firms anyway.
But that could set up an unstable dynamic in the world economy — and one that will matter profoundly for the politics of decarbonization.
Deluged with cash, those EV and clean-energy firms would expand production, flooding the market with even more vehicles, batteries, solar panels, and the rest. But Chinese consumers won’t have the money to buy that stuff, so it will get exported abroad, driving down global prices even further.
And that brings us back to the Chinese decarbonization paradox. Would a global glut of Chinese climate tech be good for the planet? In the short term, probably yes. (My colleague Jeremy Wallace recently argued that it could be a very good thing.) Chinese firms already make some of the world’s cheapest electric vehicles and batteries. Expanding production further would allow China to keep learning by doing, driving down their cost even further. If the yuan were to lose value against the dollar or Euro (something that, to be clear, the Chinese government hopes to avoid), then that technology would get even cheaper. And cheaper EVs are a good thing, because more drivers would be able to buy them, cutting global oil demand.
But such a glut would be politically complicated in the medium and long term. Across developed democracies, politicians have promised that the energy transition will create good jobs at home. President Joe Biden’s mantra — “When I hear climate, I think jobs” — is just the most recent of many similar promises issued in Asia and Europe.
And a sudden global export glut of Chinese clean tech could be catastrophic for those promises, especially in Europe and North America, where inflation is higher and interest rates are tighter. When Chinese firms flooded the world with cheap solar panels in the early 2010s, they inadvertently killed a crop of companies abroad working on advanced or experimental solar technology — including Solyndra, the American startup whose failure became synonymous with President Barack Obama’s aborted green industrial policy.
Now, to some degree, the United States may have insulated itself from a glut this time by passing the Inflation Reduction Act, whose subsidies will ensure that America maintains at least a minimal base of solar panel, battery, and electric vehicle production. The Biden administration has also shown itself to be more willing to raise tariffs to fight sudden shifts in the market. But if American companies want to export what they make in the U.S. — and they should, given that making globally competitive products is essential for maintaining an edge — then they will have to compete with bargain-basement prices.
Where a deluge of Chinese EVs would be really catastrophic is Europe, where BYD and other Chinese automakers have already made a beachhead. Volkswagen and other European manufacturers are switching to an all-electric fleet slower than their Chinese counterparts; their vehicles are also more expensive than Chinese imports.
To be sure, there’s no guarantee that China’s slowdown will automatically lead to a global green glut; Corey Cantor, an EV analyst at BloombergNEF, told me that he doesn’t think it’s the most likely scenario. But I’m worried anyway. The EU has been slow to react to the Inflation Reduction Act; its trade negotiators have clung to the ideal of free global trade even as the continent’s major trading partners have modified their approaches. (Even when it does engage in quasi-protectionism — such as with its carbon border adjustment mechanism — it has chosen methods with a veneer of fairness and impartiality.) In the European democracies, meanwhile, the far right is gaining steam. Will the EU bureaucracy adjust its stance in time?
For the past few decades, the decarbonization story has been a sideshow on the world stage. Diplomats gathered once a year to discuss climate change, then they got on with the major set pieces of geopolitics: trade, economics, war, peace. But Bidenomics and the Chinese slowdown show that that act has ended. Those of us who care about climate change — who have devoted our time, money, or careers to slowing it — can no longer pretend our issue exists solely in a domestic or environmental context. We insisted for years that climate change was the world’s most important story, and the world, in all its terrible power, has finally listened.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.
On billions for clean energy, Orsted layoffs, and public housing heat pumps
Current conditions: A tropical rainstorm is forming in the Atlantic that’s forecast to barrel along the East Coast through early next week, threatening major coastal flooding and power outages • Hurricane Priscilla is weakening as it tracks northward toward California • The Caucasus region is sweltering in summer-like heat, with the nation of Georgia enduring temperatures of up to 93 degrees Fahrenheit in October.
Base Power, the Texas power company that leases batteries to homeowners and taps the energy for the grid, on Tuesday announced a $1 billion financing round. The Series C funding is set to supercharge the Austin-based company’s meteoric growth. Since starting just two years ago, Base has deployed more than 100 megawatts of residential battery capacity, making it one of the fastest growing distributed energy companies in the nation. The company now plans to build a factory in the old headquarters of the Austin American-Statesman, the leading daily newspaper in the Texan capital. The funding round included major investors who are increasing their stakes, including Valor Equity Partners, Thrive Capital, and Andreessen Horowitz, and at least nine new venture capital investors, including Lowercarbon, Avenir, and Positive Sum. “The chance to reinvent our power system comes once in a generation,” Zach Dell, chief executive and co-founder of Base Power, said in a statement. “The challenge ahead requires the best engineers and operators to solve it and we’re scaling the team to make our abundant energy future a reality.”
The deal came a day after Brookfield Asset Management, the Canadian-American private equity giant, raised a record $23.5 billion for its clean energy fund. At least $5 billion has already been spent on investments such as the renewable power operator Neoen, the energy developer Geronimo Power, and the Indian wind and solar giant Evren. “Energy demand is growing fast, driven by the growth of artificial intelligence as well as electrification in industry and transportation,” Connor Teskey, Brookfield’s president and renewable power chief, said in a press release. “Against this backdrop we need an ‘any and all’ approach to energy investment that will continue to favor low carbon resources.”
Orsted has been facing down headwinds for months. The Danish offshore wind giant has absorbed the Trump administration’s wrath as the White House deployed multiple federal agencies to thwart progress on building seaward turbines in the Northeastern U.S. Then lower-than-forecast winds this year dinged Orsted’s projected earnings for 2025. When the company issued new stock to fund its efforts to fight back against Trump, the energy giant was forced to sell the shares at a steep discount, as I wrote in this newsletter last month. Despite all that, the company has managed to raise the money it needed. On Wednesday, The Wall Street Journal reported that Orsted had raised $9.4 billion. Existing shareholders subscribed for 99.3% of the new shares on offer, but demand for the remaining shares was “extraordinarily high,” the company said.
That wasn’t enough to stave off job cuts. Early Thursday morning, the company announced plans to lay off 2,000 employees between now and 2027. The cuts represented roughly one-quarter of the company’s 8,000-person global workforce. “This is a necessary consequence of our decision to focus our business and the fact that we'll be finalizing our large construction portfolio in the coming years — which is why we'll need fewer employees,” Rasmus Errboe, Orsted’s chief executive, said in a statement published on CNBC. "At the same time, we want to create a more efficient and flexible organization and a more competitive Orsted, ready to bid on new value-accretive offshore wind projects.”
California Governor Gavin Newsom. Mario Tama/Getty Images
California operates the world’s largest geothermal power station, The Geysers, and generates up to 5% of its power from the Earth’s heat. But the state is far behind its neighbors on developing new plants based on next-generation technology. Most of the startups racing to commercialize novel methods are headquartered or building pilot plants in states such as Utah, Nevada, and Texas. A pair of bills to make doing business in California easier for geothermal companies was supposed to change that. Yet while Governor Gavin Newsom signed one statute into law that makes it easier for state regulators to certify geothermal plants, he vetoed a permitting reform bill to which the industry had pegged its hopes. “Every geothermal developer and energy org I talked to was excited about this bill,” Thomas Hochman, who heads the energy program at the right-leaning Foundation for American Innovation, wrote in a post on X. “The legislature did everything right, passing it unanimously. They even reworked it to accommodate certain classic California concerns, such as prevailing wage requirements.”
In a letter announcing his veto, the governor claimed that the law would have added new fees for geothermal projects. But an executive at Zanskar — the startup that, as Heatmap’s Katie Brigham reported last month, is using new technology to locate and tap into conventional geothermal resources — called the governor’s argument “weak sauce.” Far from burdening the industry, Zanskar co-founder Joel Edwards said on X, “this was a clean shot to accelerate geothermal today, and he whiffed it.”
Last month, Generate Capital trumpeted the appointment of its first new chief executive in its 11-year history as the leading infrastructure investment firm sought to realign its approach to survive a tumultuous time in clean-energy financing. Less publicly, as Katie wrote in a scoop last night, it also kicked off company-wide job cuts. In an interview with Katie, Jonah Goldman, the firm’s head of external affairs, said the company “grew quickly and made some mistakes,” and now planned to lay off 50 people.
Generate once invested in “leading-edge technologies,” according to co-founder Jigar Shah, who left the firm to serve as the head of the Biden-era DOE Loan Programs Office. That included investments in projects involving fuel cells, anaerobic digesters, and battery storage. But from the outside, he said on the Open Circuits podcast he now co-hosts, the firm appears to have moved away from taking these riskier but potentially more lucrative bets. “They ended up with 38 people in their capital markets team, and their capital markets team went out to the marketplace and said, Hey, we have all this stuff to sell. And the people that they went to said, Well, that’s interesting, but what we really would love is boring community solar.”
Three of New England’s largest public housing agencies signed deals with the heat pump manufacturer Gradient to replace aging electric heaters and air conditioners with the company’s 120-volt, two-way units that provide both heating and cooling. The Boston Housing Authority, New England’s largest public housing agency, will kick off the deal by installing 100 all-weather, two-way units that both heat and cool at the Hassan Apartments, a complex for seniors and adults with disabilities in Boston’s Mattapan neighborhood. The housing authorities in neighboring Chelsea and Lynn — two formerly industrial, working-class cities just outside Boston — will follow the same approach.
Public housing agencies have long served a vital role in helping to popularize new, more efficient appliances. The New York City Housing Authority, for example, is credited with creating the market for efficient mini fridges in the 1990s. Last year, NYCHA — the nation’s largest public housing system — signed a similar deal with Gradient for heat pumps. Months later, as Heatmap’s Emily Pontecorvo exclusively reported at the time, NYCHA picked a winner in its $32 million contest for an efficient new induction stove for its apartments.
Three chemists — Susumu Kitagawa, Richard Robson, and Omar Yaghi — won the Nobel Prize for “groundbreaking discoveries” that "may contribute to solving some of humankind’s greatest challenges, from pollution to water scarcity.” Just a few grams of the so-called molecular organic frameworks the scientists pioneered could have as much surface area as a soccer field, which can be used to lock gas molecules in place in carbon capture or harvest freshwater from the atmosphere.