You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why the grid of the future might hinge on these 10 projects.
The energy transition happens one project at a time. Cutting carbon emissions is not simply a matter of shutting down coal plants or switching to electric cars. It calls for a vast number of individual construction projects to coalesce into a whole new energy system, one that can generate, transmit, and distribute new forms of clean power. Even with the right architecture of regulations and subsidies in place, each project must still conquer a series of obstacles that can require years of planning, fundraising, and cajoling, followed by exhaustive review before they can begin building, let alone operating.
These 10 projects represent the spectrum of solutions that could enable a transition to a carbon-free energy system. The list includes vastly scaled up versions of mature technologies like wind and solar power alongside the traditional energy infrastructure necessary to move that power around. Many of the most experimental or first-of-a-kind projects on this list are competing to play the role of “clean firm” power on the grid of the future. Form’s batteries, Fervo’s geothermal plants, NET Power’s natural gas with carbon capture, and TerraPower’s molten salt nuclear reactor could each — in theory — dispatch power when it’s needed and run for as long as necessary, unconstrained by the weather. Others, like Project Cypress, are geared at solving more distant problems, like cleaning up the legacy carbon in the atmosphere.
But they do not all have a clear path to success. Each one has already faced challenges, and many of them are likely to face a great number more. We call these the make-or-break energy projects because it's still unclear what the clean energy system of the future is going to look like, but the projects from this list are likely to play a big part in it — if, that is, they get there.
Heatmap Illustration/Getty Images
Type of project: Solar farm
Developer: Intersect Power
Location: Desert Center, Riverside County, California.
Size: 400 megawatts of generation and 650 megawatts of storage
Operation date: Possibly 2025
Cost: $990 million
Why it matters: Facing opposition from local retirees angered by the large number of projects popping up in the area, as well as from conservation-focused groups — such as Basin and Range Watch, which opposes many utility-scale energy projects in desert areas — Easley will be a test of whether California’s reforms to limit the timeframe of appeals to the state’s environmental reviews can actually work in getting a project approved and online faster.
The early signs are promising. A nearby solar project by the same developer, Intersect Power, recently went into operation after getting approved by the Bureau of Land Management in January 2022. Easley could be operational “as early as late 2025,” according to a Plan of Development prepared for Intersect Power.
Easley is also an example of what’s increasingly becoming standard in California, at both the residential and utility-scale level: pairing solar with storage. The California grid increasingly relies on batteries to keep the lights on as solar ramps up and down in the mornings and, especially, the evenings. The state has procured a massive amount of storage and has adjusted how utilities pay for rooftop solar in a way that encourages pairing battery systems with rooftop solar panels. This both stabilizes the grid and helps further decarbonize it, as batteries that are physically close to intermittent renewables are more likely to abate carbon emissions.
Heatmap Illustration/Form Energy
Type: Energy storage
Developer: Form Energy and Great River Energy
Location: Cambridge, Minnesota
Size: 150 megawatt hours
Operation date: End of 2025
Cost: Unknown; Goal of less than 1/10th cost of utility-scale lithium-ion batteries per megawatt hour
Why it matters: Form Energy first made waves in 2020 when it announced a contract with Great River Energy, a Minnesota electric utility, to build a battery that could store 100 hours’ worth of electricity, which was simply unheard of. Other energy storage companies were just trying to break the 4-hour limitation of lithium-ion, aiming for 8 hours or, at most, 12. Days-long energy storage would be a game changer for maintaining reliability during extreme weather events, storing renewable energy for stretches of cloudy days or windless nights or kicking in when demand peaks. At first, Form’s project was shrouded in mystery. How, exactly, would it do this? But a year later, the company revealed the secret chemistry behind its breakthrough: iron and oxygen. The batteries are filled with iron pellets that, when exposed to oxygen, rust, releasing electrons to the grid. They “charge” by running in reverse, using the electrical current from the grid to convert the rust back to iron.
Since then, the hype has continued to build. Form has raised nearly $1 billion from venture capital and been awarded tens of millions more ingovernment grants. It has signed contracts with six utilities to deploy projects in California, New York, Virginia, Georgia, and Colorado, in addition to Minnesota. All this, despite not having completed a single project yet.
The Great River Energy Project is set to be the first to come online. Originally, the company said it would be operating by the end of 2023; now it’s expected to start construction later this year and begin operating in early 2025, Vice President of Communications Sarah Bray told Heatmap. First, the company has to complete construction of its first factory in Weirton, West Virginia, where it will be producing all of the batteries. Bray said it expects to start high-volume production later this year.
Heatmap Illustration/Getty Images
Type: Onshore wind
Developer: Pattern Energy
Location: Lincoln, Torrance, and San Miguel Counties, New Mexico, with transmission into Arizona
Size: 3,500 megawatts
Operation date: 2026
Cost: The project’s developer, Pattern Energy, has secured $11 billion in financing for the wind and associated transmission project. The cost of the project is estimated to be $8 billion.
Why it matters: This would be the biggest wind project in the country and a test case for a variety of energy policy objectives at both the state and federal level. For California, it would be a key step in decarbonizing its grid, as the state right now imports a large amount of its power, not all of which is carbon-free. For the federal government, it meets several goals — using public lands for carbon-free energy development, plus long-distance transmission to spur energy development across the country and link clean power resources in rural areas to major load centers.
It would also mean an ambitious project could overcome long and concerted opposition. The project was first proposed in 2006, and its transmission line cleared environmental review back in 2015, but it has been mired in lawsuit after lawsuit. Most recently, a coalition of conservation groups and Indian tribes sued to halt construction on the power line portion of the project in Arizona’s San Pedro Valley, claiming that their cultural rights had not been adequately respected. In April, a judge allowed construction to continue, ruling that those claims were barred by the existing federal approvals, which had taken years to attain.
Heatmap Illustration/Getty Images
Type: Offshore wind
Developer: Equinor
Location: South of Long Island, New York
Size: 810 megawatts
Operation date: 2026
Cost: Not available, but an earlier estimate for developing two wind farms was $3 billion. Costs have since risen, but the second farm, Empire Wind 2, is no longer under contract.
Why it matters: The Northeast, and especially New York State, have aggressive aims for decarbonization, with a goal of 70% of the state’s electricity coming from renewables by 2030. The Biden administration also has a specific goal for 30 gigawatts of offshore wind capacity by 2030, and New York has a goal of 9 gigawatts by 2035. These types of high-capacity projects will be essential for the Northeast to decarbonize. The windy coast of the Atlantic Ocean is the most potent large-scale renewable resource in the region, and many of the region’s large load centers, such as New York City and Boston, are on the coast.
Offshore wind, while expensive, can present less permitting hassle and local opposition than onshore wind or utility-scale solar. Empire Wind 1 (along with Sunrise Wind) matters tremendously for New York’s offshore wind program, which has been in development for years but has faced escalating costs and project cancellations. Only one offshore wind project is actually operational in the state, South Fork Wind, which was contracted outside the NYSERDA process and has around 130 megawatts of capacity. If Empire manages to get steel in the water and electrons flowing to the coast, it will be a sign that the Northeast’s — and thus the country’s — decarbonization goals are at least somewhat attainable.
Heatmap Illustration/Getty Images
Type: Transmission
Developers: Transmission Developers, which is owned by the Blackstone Group
Size: 339 miles / 1,250 megawatts
Operation date: 2026
Cost: $6 billion
Why it matters: The Champlain Hudson Power Express, often referred to as CHPE (affectionately pronounced “chippy”) will deliver 1,250 megawatts of hydropower from Quebec into the New York City grid, which is currently about 90% powered by fossil fuels. It is “the most powerful project you’ll never see,” according to its developers, as it is the largest transmission line in the country to be installed entirely underground and underwater.
The project is essential to New York’s goal to build a zero-emission electricity system by 2040. The line will supply an always-available source of clean power to supplement intermittent wind and solar generation and maintain a reliable grid. It has already overcome a number of barriers, including nearly a decade of environmental reviews, uncertainty over whether New York would buy its power, and opposition from conservation advocates concerned about the negative impacts of hydroelectric dams on the environment and on Native communities in Canada.
When it begins operating, New Yorkers won’t just get cleaner power — they should also see air quality benefits almost immediately. The new line is expected to cut air pollution equivalent to that released by 15 of the city’s 16 fossil fuel-fired peaker plants.
Heatmap Illustration/Fervo
Developer: Fervo
Type: Geothermal
Location: Beaver County, Utah
Size: 400 megawatts
Operation date: 2026, although the project isn’t expected to be finished until 2028
Cost: Not disclosed, but Fervo raised $244 million and said that the cash “will support Fervo’s continued operations at Cape Station.”
Why it matters: This enhanced geothermal project is not the first one for Fervo. The company’s Nevada site, Project Red, began providing power for Google data centers in Nevada in November 2023. This planned site, however, will be far bigger: Fervo currently has authorization from the Bureau of Land Management for up to 29 exploratory wells, while the Project Red site had just two. Cape Station broke ground in September 2023, and in the first six months of drilling, Fervo said it reduced costs from drilling by 70% compared to its Project Red wells.
As the grid decarbonizes and major power consumers like technology companies insist on having clean power for their operations, there will be massive and growing demand for so-called “clean firm” power, carbon-free power that is available all the time. Conventional wind and solar is intermittent, and existing battery technology only allows for limited output over time. Fervo’s “enhanced geothermal” technology uses techniques borrowed from the oil and gas industry to be able to produce geothermal power essentially anywhere where there are hot enough rocks underneath the surface of the Earth, as opposed to conventional geothermal, which depends on locating hot enough fluid or stream.
If Fervo can demonstrate that it can produce power at scale at costs comparable to existing conventional geothermal projects, it can expect a massive market for it and demand for more projects.
Heatmap Illustration/TerraPower
Type: Nuclear
Developer: TerraPower
Location: Kemmerrer, Wyoming
Size: 345 megawatts
Operation date: Not available, but the company said in 2021 that it plans to be operational “in the next seven years.” Updated to the 2024 application, that would put it on track for a 2030 completion date.
Cost: Not available, but TerraPower has raised around $1 billion and the federal government has pledged around $2 billion to support the project, which TerraPower has said it will “match … dollar for dollar.”
Why it matters: TerraPower is just one of many companies flogging designs for advanced nuclear reactors, which are smaller and promise to be cheaper to build than America’s existing light-water nuclear reactor fleet. The construction permit application the company submitted in March was a first for a commercial advanced reactor. TerraPower matters as much for the Nuclear Regulatory Commission as it does for anyone else, as it’s a test of whether the NRC can meet Congress and the White House’s preference for a more accelerated approval process for advanced nuclear power.
TerraPower’s design, if successful, would be a landmark for the American nuclear industry. The reactor design calls for cooling with liquid sodium instead of the standard water-cooling of American nuclear plants. This technique promises eventual lower construction costs because it requires less pressure than water (meaning less need for expensive safety systems) and can also store heat, turning the reactor into both a generator and an energy storage system.
While there are a number of existing advanced nuclear designs, several of which involve liquid sodium, Natrium could potentially play well with a renewable-heavy grid by providing steady, unchanging output like a current nuclear reactor as well as discharging stored energy in response to renewables falling off the grid.
Heatmap Illustration/Hy Stor Energy
Type: Hydrogen
Developer: Hy Stor Energy
Location: Project components located throughout Mississippi, with some in Eastern Louisiana
Size: Goal of 340,000 metric tons per year (phase one)
Operation date: 2027
Cost: Initially reported as $3 billion; recently reported as more than $10 billion. (In response to an inquiry from Heatmap, the company replied that it “will be in the multiple billions of dollars.”
Why it matters: Truly carbon-free hydrogen could unlock big emissions reductions across the economy, from fertilizer production, to steelmaking, to marine shipping. But few companies are going to the lengths that Hy Stor is gto ensure its product is really clean. The company is building the first off-grid hydrogen production facility powered entirely by wind and solar. That means Hy Stor will have no problem claiming the new hydrogen production tax credit, which requires companies to match their operations with clean energy sources by the hour — a provision that’s been contested by large portions of the hydrogen industry.
For a company that has never built anything before, the scale of Hy Stor’s Mississippi project is ambitious. The company has acquired about 70,000 acres across Mississippi and Louisiana, along with 10 underground salt domes — mounds of salt buried beneath the Earth’s surface that can be dissolved to form cavernous, skyscraper-sized storage facilities for hydrogen. Those salt domes are the key to Hy Stor’s approach, and what enables the company to rely on intermittent renewables. By storing vast amounts of hydrogen, the company will be able to deliver a steady supply to customers and will also have a backup source of energy for its own operations when wind and solar are less available.
Chief Commercial Officer Claire Behar told Heatmap the company has obtained many of the necessary permits, including for its salt caverns and the plant’s water use. It plans to begin construction at the beginning of 2025, and to have the first phase of the project “in service at scale” by 2027. Hy Stor recently announced a deal to purchase its electrolyzers, devices that split water molecules into hydrogen and oxygen, from a Norwegian company called Nel Hydrogen. It has also signed up a few customers, including a local port and a green steel company.
Heatmap Illustration/Project Cypress
Type: Carbon removal
Developers: Climeworks, Heirloom, and Battelle
Location: Calcasieu Parish, Louisiana
Size: Goal of capturing 1 million metric tons per year
Operation date: About 2030
Cost: Total project cost unknown; eligible for up to $600 million from the Department of Energy for its Regional Direct Air Capture Hubs Program.
Why it matters: Project Cypress might be the most ambitious project to remove carbon from the atmosphere under development in the world. It is a collaboration by two leading direct air capture companies, Heirloom Carbon Technologies and Climeworks, which were among the first to demonstrate their ability to capture carbon directly from the air and store it at commercial scale. Now, the two will be attempting to scale up exponentially, from capturing a few thousands tons per year to a combined million.
Last August, the Department of Energy selected Project Cypress to be one of four direct air capture hubs it will support with $3.5 billion from the Bipartisan Infrastructure Law. In March, the project was awarded its first infusion of $50 million, but the developers will have to do extensive community engagement to continue receiving funding. Battelle, the project developer, told Heatmap the project has also received an additional $51 million in private investment.
Between financing, permitting challenges, renewable energy sourcing, and community opposition, the project is sure to face a bumpy road ahead. The project and its developers have no ties to the oil and gas industry, but that hasn’t done much to win over the support of environmental justice advocates, who see the project as a dangerous distraction from cutting emissions and pollution in Louisiana. But if Project Cypress is successful, it will show the world what direct air capture looks like at climate-relevant scales.
Heatmap Illustration/NET Power
Type: Carbon capture
Developer: NET Power
Location: Ector County, Texas
Size: 300 megawatts
Operation date: Late 2027 or early 2028
Cost: About $1 billion
Why it matters: Oil and gas CEOs love to say that the problem is not fossil fuels, the problem is emissions. NET Power’s technology — a natural gas power plant with zero emissions, carbon or otherwise — could prove to be the ultimate vindication of that statement. In short, NET Power’s system recycles most of the CO2 it produces and uses it to generate more energy. It also utilizes pure oxygen, unlike typical natural gas plants that take in regular air, which is mostly nitrogen. This means that any remaining CO2 not recycled in the plant is relatively pure and easy to capture.
NET Power opened a 50 megawatt demonstration plant in La Porte, Texas, in 2018, and is developing a 300 megawatt commercial plant in Ector County, Texas, in partnership with Occidental Petroleum, Baker Hughes, and Constellation Energy. On a recent earnings call, CEO Danny Rice said the project was “expected to have a lower levelized cost per kilowatt hour than new nuclear, new geothermal, and new hydro.”
The company generated a lot of excitement among energy experts in the fall of 2021 when it announced that its La Porte project had successfully delivered power to the Texas grid. It also raised a lot of money when it went public last summer. But things have been somewhat rocky since. During a December earnings call, NET Power’s president told investors that its first commercial plant would be delayed by at least a year due to supply chain challenges. According to filings with the Securities and Exchange Commission, the company also applied for funding from the Department of Energy’s Office of Clean Energy Demonstrations last year, but was not selected. It has not yet found any third parties to license its technology or offtakers to buy energy from the Ector County plant, and noted in its recent filings that while the La Porte pilot project delivered electricity to the grid, it did not, in fact, deliver “net” power — meaning that it used more power than it generated.
A spokesperson for the company told Heatmap the La Porte facility was solely intended to “prove the technical viability of the NET Power Cycle” and not intended to produce net power. So everything’s now riding on Project Permian.
Editor’s note: This story has been updated to correct a typographical error in the amount of private investment Project Cypress has received.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A new list of Department of Energy grants slated for termination will hit clean energy and oil majors alike, including Exxon and Chevron.
A new list of Department of Energy grants slated for termination obtained by Heatmap reveals an additional 338 awards for clean energy projects that the agency intends to cancel. Combined with the 321 grants the agency said it was terminating last week, the total value is nearly $24 billion.
While last week’s announcement mostly targeted companies and institutions located in Democratic states, the new list appears to be indiscriminate. Conrad Schneider, the senior U.S. director at Clean Air Task Force, told me in a statement that the move “will have far-reaching consequences — with virtually no region unscathed.”
“The federal government plays an essential role in addressing gaps that stall the commercialization of energy breakthroughs by providing grants and loans to accelerate innovative projects,” he said. “By abruptly canceling funding for several hundred energy projects, the U.S. risks ceding American energy leadership and signals that U.S. innovation is not a priority.”
Some of the most significant new terminations on the list include:
While two of the seven hydrogen hubs — those in California and the Pacific Northwest — were on last week’s cancellations list, all seven have their status listed as “terminate” on this new list. That includes hubs that planned to make hydrogen from natural gas based in Appalachia, the Gulf Coast, Texas, and the Midwest.
Those awards came out of $8 billion allocated by Congress in the IIJA in 2021 to develop hubs where companies and states would work together to produce and test the use of cleaner hydrogen fuel in new industries. The move would hit oil majors in addition to green energy companies. Exxon and Chevron were partners on the Hyvelocity hydrogen hub on the Gulf Coast.
“If the program is dismantled, it could undermine the development of the domestic hydrogen industry,” Rachel Starr, the senior U.S. policy manager for hydrogen and transportation at Clean Air Task Force told me. “The U.S. will risk its leadership position on the global stage, both in terms of exporting a variety of transportation fuels that rely on hydrogen as a feedstock and in terms of technological development as other countries continue to fund and make progress on a variety of hydrogen production pathways and end uses."
The Inflation Reduction Act’s Domestic Manufacturing Conversion Grants, which were meant to support the conversion of shuttered or at-risk auto plants to be able to manufacture electric vehicles and their supply chains, would be fully obliterated based on the new list. All 13 grants that were awarded under the program are there, including $80 million for Blue Bird’s new electric school bus plant in Fort Valley, Georgia, $500 million for General Motors’ Grant River Assembly Plant in Lansing, Michigan, and $285 million for Mercedes-Benz’s next-generation electric van plant in Ladson, South Carolina.
Some of the other projects slated for termination raise questions about other projects from the same grant program that are not on the list. For example, a $45 million grant for the National Rural Electric Cooperative Association to deploy microgrids in seven communities shows up as terminated, along with several other awards made as part of the IIJA’s Energy Improvements in Rural or Remote Areas program. Grants for indigenous tribes in Alaska, Wisconsin, and throughout the Southwest from that program appear to be preserved, however.
A $9.8 million grant to Sparkz to build a first-of-its-kind battery-grade iron phosphate plant in West Virginia also makes an appearance. The award was made as part of a nearly $430 million funding round from the IIJA to accelerate domestic clean energy manufacturing in 15 former coal communities. Similar awards made to Anthro Energy in Louisville, Kentucky, Infinitum in Rockdale, Texas, Mainspring Energy in Coraopolis, Pennsylvania, and a company called MetOx International developing an advanced superconductor manufacturing facility in the Southeast appear to be safe.
When asked about the new list, DOE spokesperson Ben Dietderich told me by email that he couldn’t attest to its validity. He added that “no further determinations have been made at this time other than those previously announced,” referring to the earlier 321 cancellations.
A new list of grant cancellations obtained by Heatmap includes Climeworks and Heirloom projects funded by 2021 infrastructure law.
Trump’s Department of Energy is planning to terminate awards for the two major Direct Air Capture Hubs funded by the Bipartisan Infrastructure Law in Louisiana and Texas, Heatmap has learned.
An internal agency project list shared with Heatmap names nearly $24 billion worth of grants with their status designated as “terminated,” including the Occidental Petroleum’s South Texas DAC Hub as well as Project Cypress, a joint venture between DAC startups Heirloom and Climeworks.
Christoph Gebald, the CEO of Climeworks, acknowledged “market rumors” in an email, but said that the company is “prepared for all scenarios.”
“Demand for removals is increasing significantly, with momentum set to build as governments set their long-term targets,” he said. “The need for DAC is growing as the world falls short of its climate goals and we’re working to achieve the gigaton capacity that will be needed.”
Heirloom’s head of global policy, Vikrum Aiyer, said that the company was not aware of any decision from the DOE and continued “to productively engage with the administration in a project review.” He added that Heirloom remains “incredibly proud to stand shoulder to shoulder with Louisiana energy majors, workforce groups, non-profits, state leaders, the governor and economic development organizations who have strongly advocated for this project.”
Much of the rest of the list overlaps with the project terminations the agency announced last week as part of a spate of retributive actions against Democrats during the government shutdown. “Nearly $8 billion in Green New Scam funding to fuel the Left’s climate agenda is being canceled,” White House Budget Director Russ Vought wrote on social media ahead of the announcement.
DOE spokesperson Ben Dietderich told me by email that the department was “unable to verify” the new list of canceled grants, and that “no further determinations have been made at this time other than those previously announced.”
“As [Secretary of Energy Chris Wright] made clear last week, the Department continues to conduct an individualized and thorough review of financial awards made by the previous administration,” Dietderich said.
Direct air capture is a nascent technology that sucks carbon, as the name suggests, directly from the air, and is one of several carbon removal solutions with potential to slow global warming in the near term, and even reverse it in the long run. The $3.5 billion DAC Hubs program, created by Congress in the 2021 Bipartisan Infrastructure Law, promised to “establish a new sector of the American economy and remake another one, while providing the world with an important tool to fight climate change,” as my colleague Robinson Meyer put it.
After a competitive application process, the Biden administration selected two projects that would receive up to $600 million each to build DAC projects capable of removing more than 1 million tons of carbon from the atmosphere per year and storing it permanently underground. Occidental, which first partnered with and later acquired a Canadian DAC startup called Carbon Engineering, would build its hub in South Texas, near Corpus Christi. Two other leading DAC startups, the California-based Heirloom Carbon and Swiss company Climeworks, would work together to build a hub in Louisiana. After the selections were announced, both projects received an initial $50 million award for their next phase of development, which was set to be matched by private investment.
"These hubs were selected through a rigorous and competitive process designed to identify projects capable of advancing U.S. leadership in carbon removal and industrial decarbonization,” Jennifer Wilcox, the former principal deputy assistant secretary for the DOE’s Office of Fossil Energy and Carbon Management, told me in an email. “The burden should be on DOE to clearly demonstrate why that process is being overturned.”
All three companies already have demonstration plants that are either operating or under construction. Climeworks began operating the world’s first commercial DAC plant in Iceland in 2021, designed to capture about 4,000 tons per year, and has since scaled up to a larger plant more than eight times that size. Heirloom opened the first DAC plant in the U.S. in November 2023, in Tracy, California, capable of capturing 1,000 tons per year. Occidental’s first DAC project, Stratos, in West Texas, will be the largest of the bunch, designed to capture 500,000 tons per year. It is set to be completed in the next few months.
Removing carbon from the air with one of these facilities is currently extremely expensive and energy-intensive. Today, companies pre-sell carbon credits to airlines and tech companies to raise money for the projects, but will likely require government support to continue to innovate and bring the cost down. While both Climeworks and Heirloom announced the sale of credits that would support their DAC hub projects, it’s not clear whether those credits were meant to be fulfilled by the projects themselves.
The DOE grants would have helped prove the viability of the technology at a scale that will make a measurable difference for the climate, while also demonstrating a potential off-ramp for oil companies and the economies they support. Both projects said they expected to create more than 2,000 local jobs in construction, operations, and maintenance.
“The United States, up to this point, was the direct air capture leader and the place where top innovators in the field were choosing to build facilities as well as manufacture the actual components of the units themselves,” Jack Andreasen Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “The cancellation of these grants to high-quality projects ensures that these American jobs will be shipped overseas and cede our broader economic advantage.”
That’s already happening. On the same day last week that the DOE announced it was terminating an award for CarbonCapture Inc., another California-based DAC company, the startup said it would move its first commercial pilot from Arizona to Alberta, Canada. Gebald, of Climeworks, said the company has “a pipeline of other DAC projects around the world,” including opportunities in Canada, the U.K., and Saudi Arabia.
Cavanaugh also pointed out there was a disconnect between the terminations, Congress’ recent actions, and even actions under the first Trump administration. Trump’s DOE revised the 45Q tax credit for carbon capture in 2018 to allow direct air capture projects to qualify. In July, the reconciliation bill preserved that credit and strengthened it. “These were bipartisan-supported projects, and it goes expressly against congressional intent.”
As the DAC hubs program was congressionally mandated and the awards were under contract, the companies may have legal recourse to fight the terminations. The press release from the DOE announcing last week’s terminations said that award recipients had 30 days to appeal the decision. “That process must be meaningful and transparent,” Wilcox said. “If DOE is invoking financial-viability criteria, companies and communities deserve to see the underlying metrics, thresholds, and justification — and to understand whether those criteria are being applied consistently across projects.”
While this isn’t a death knell for DAC in general, it will be a “massive setback for American climate and industrial policy”, Erin Burns, executive director of the carbon removal advocacy group Carbon 180, told me. “The need for carbon removal hasn’t changed. The science hasn’t changed. What’s changed is our political will, and we’ll feel the consequences for years to come.”
Editor’s note: This piece has been updated to add comment from the Department of Energy and to correct the total value of canceled grants.
On Trump’s metal nationalization spree, Tesla’s big pitch, and fusion’s challenges
Current conditions: King tides are raising ocean levels near Charleston, South Carolina, as much as eight feet above low water averages • A blizzard on Mount Everest has trapped hundreds of hikers and killed at least one • A depression that could form into Tropical Storm Jerry is strengthening in the Atlantic as it barrels northward with an unclear path.
Solar and wind outpaced the growth of global electricity demand in the first half of 2025, vaulting renewables toward overtaking coal worldwide for the first time on record, according to analysis published Tuesday by the research outfit Ember. This year’s growth resulted in a small overall decline in both coal and gas-fired power generation, with India and China seeing the most notable reductions, despite the United States and Europe ratcheting up fossil fuel usage. “We are seeing the first signs of a crucial turning point,” Malgorzata Wiatros-Motyka, a senior electricity analyst at Ember, said in a statement. “Solar and wind are now growing fast enough to meet the world’s growing appetite for electricity. This marks the beginning of a shift where clean power is keeping pace with demand growth.”
Wind and solar installations matched 109% of new global demand for power in the first half of 2025.Ember
That growth is projected to continue. Later on Tuesday morning, the International Energy Agency released its own report forecasting that renewable capacity will double over the next five years. Solar is predicted to make up 80% of that growth. But, factoring in the Trump administration’s policies, the forecast roughly cut in half previous projections for U.S. growth. Domestic opposition to renewables runs beyond the White House, too. Exclusive data gathered by Heatmap Pro and published in July showed that a fifth of U.S. counties now restrict development of renewables.
President Donald Trump signed an executive order Monday directing federal agencies to push forward with a controversial 211-mile mining road in Alaska designed to facilitate production of copper, zinc, gallium, and other critical minerals. The project, which the Biden administration halted last year over concerns for permafrost in the fast-warming region, has been at the center of a decadeslong legal battle. As part of the deal, the U.S. government will invest $35.6 million in Alaska’s Ambler Mining District, including taking a 10% stake in the main developer, Trilogy Metals, that includes warrants to buy an additional 7.5% of the company. The road itself will be jointly owned by the state, the federal government, and Alaska Native villages. “It’s a very, very big deal from the standpoint of minerals and energy,” Trump said in the Oval Office.
It’s just the latest stake the Trump administration has taken in a mineral company. In July, the Department of Defense became the largest shareholder of MP Materials, the company producing rare earths in the U.S. at its Mountain Pass mine in California. The move, The Economist noted at the time, marked the biggest American experiment in direct government ownership since the nationalization of the railroads in World War I. Last week, the Department of Energy renegotiated a loan to Lithium Americas’ Thacker Pass project in Nevada to take a stake in what’s set to become the largest lithium mine in the Western Hemisphere when it comes online in the next few years. The White House’s mineral shopping spree isn’t over. On Friday, Reuters reported that the administration is considering buying shares in Critical Metals, the company looking to develop rare earths production in Greenland. In response to the news, shares in the Nasdaq-traded miner surged 62% on Monday. Partial nationalization isn’t the only approach the administration is taking to challenging China’s grip over global mineral supplies. Last month, as I reported for Heatmap, the Defense Logistics Agency awarded money to Xerion, an Ohio startup devising a novel way to process cobalt and gallium.
Tesla looks poised to unveil a cheaper, stripped-down version of its Model Y as early as today. In one of two short videos posted to CEO Elon Musk’s X social media site, the electric automaker showed the midsize SUV’s signature lights beaming through the dark. The design matches what InsideEVs noted were likely images of the prototype spotted on a test drive in Texas. The second teaser video showed what appears to be a fast-spinning, Tesla-branded fan. “Your guess is as good as ours as to what will be revealed,” InsideEVs’ Andrei Nedelea wrote Monday. “Our money is on the Roadster or a new vacuum cleaner design to take on Dyson.”
The new products come amid an historic slump for Tesla. As Heatmap’s Matthew Zeitlin reported, the company’s share of the U.S. electric vehicle sales sank to their lowest-ever level in August despite the surge in purchases as Americans rushed to use the federal tax credits before they expired thanks to Trump’s landmark One Big Beautiful Bill Act law. Yet Musk has managed to steer the automaker’s financial fate through an attention-grabbing maneuver. Last month, the world’s richest man bought $1 billion in Tesla shares in a show of self confidence that managed to rebound the company’s stock price. But Andrew Moseman argued in Heatmap that “the bullish stock market performance is divorced not only from the reality of the company’s electric car sales, but also from, well, everything else that’s happened lately.”
On Monday, Trump warned that medium and heavy-duty trucks imported to the U.S. will face a 25% tariff starting on November 1. The president announced the trade levies in a post on Truth Social on the eve of a White House visit by Canadian Prime Minister Mark Carney, whose country would feel the pinch of tariffs on imported trucks. As the Financial Times noted, Trump had threatened to impose 25% tariffs on some trucks in late September but “failed to implement them, raising questions about his commitment to the policy.”
Fusion startups make a lot of bold claims about how soon a technology long dismissed as the energy source of tomorrow will be able to produce commercial electrons. Though investors are betting that, as Heatmap’s Katie Brigham wrote last year, “it is finally, possibly, almost time for fusion,” a new report from the University of Pennsylvania’s Kleinman Center for Energy Policy shows that supply chain challenges threaten to hold back the nascent industry even if it can bring laboratory breakthroughs to market. Tritium, one of two main fusion fuels, has a half life of just 12.3 years, meaning it does not exist in significant quantities in nature. Today, tritium is primarily produced by 30 pressurized heavy water fission reactors globally, but only at a total of 4 kilograms per year. As a result, “tritium availability could throttle fusion development,” the report found. That’s not the only bottleneck. “The fusion industry will require specialized components that don’t yet have well-established supply chains, like superconducting cables and the aforementioned advanced materials, and shortages of these components would delay development and inflate costs.”
Scientists mapped the RNA — the molecules that carry out DNA’s instructions — of wheat and, for the first time, identified when certain genes are active. The discovery promises to accelerate plant breeders’ efforts to develop more resilient varieties of the world’s most widely cultivated crop that use less fertilizer, resist higher temperatures, and survive with less water as the climate changes. “We discovered how groups of genes work together as regulatory networks to control gene expression,” Rachel Rusholme-Pilcher, the study’s lead author and a researcher at Britain’s Earlham Institute, said in a statement. “Our research allowed us to look at how these network connections differ between wheat varieties, revealing new sources of genetic diversity that could be critical in boosting the resilience of wheat.”