You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why the grid of the future might hinge on these 10 projects.
The energy transition happens one project at a time. Cutting carbon emissions is not simply a matter of shutting down coal plants or switching to electric cars. It calls for a vast number of individual construction projects to coalesce into a whole new energy system, one that can generate, transmit, and distribute new forms of clean power. Even with the right architecture of regulations and subsidies in place, each project must still conquer a series of obstacles that can require years of planning, fundraising, andcajoling, followed by exhaustive review before they can begin building, let alone operating.
These 10 projects represent the spectrum of solutions that could enable a transition to a carbon-free energy system. The list includes vastly scaled up versions of mature technologies like wind and solar power alongside the traditional energy infrastructure necessary to move that power around. Many of the most experimental or first-of-a-kind projects on this list are competing to play the role of “clean firm” power on the grid of the future. Form’s batteries, Fervo’s geothermal plants, NET Power’s natural gas with carbon capture, and TerraPower’s molten salt nuclear reactor could each — in theory — dispatch power when it’s needed and run for as long as necessary, unconstrained by the weather. Others, like Project Cypress, are geared at solving more distant problems, like cleaning up the legacy carbon in the atmosphere.
But they do not all have a clear path to success. Each one has already faced challenges, and many of them are likely to face a great number more. We call these the make-or-break energy projects because it's still unclear what the clean energy system of the future is going to look like, but the projects from this list are likely to play a big part in it — if, that is, they get there.
Heatmap Illustration/Getty Images
Type of project: Solar farm
Developer: Intersect Power
Location: Desert Center, Riverside County, California.
Size: 400 megawatts of generation and 650 megawatts of storage
Operation date: Possibly 2025
Cost: $990 million
Why it matters: Facing opposition from local retirees angered by the large number of projects popping up in the area, as well as from conservation-focused groups — such as Basin and Range Watch, which opposes many utility-scale energy projects in desert areas — Easley will be a test of whether California’s reforms to limit the timeframe of appeals to the state’s environmental reviews can actually work in getting a project approved and online faster.
The early signs are promising. A nearby solar project by the same developer, Intersect Power, recently went into operation after getting approved by the Bureau of Land Management in January 2022. Easley could be operational “as early as late 2025,” according to a Plan of Development prepared for Intersect Power.
Easley is also an example of what’s increasingly becoming standard in California, at both the residential and utility-scale level: pairing solar with storage. The California grid increasingly relies on batteries to keep the lights on as solar ramps up and down in the mornings and, especially, the evenings. The state has procured a massive amount of storage and has adjusted how utilities pay for rooftop solar in a way that encourages pairing battery systems with rooftop solar panels. This both stabilizes the grid and helps further decarbonize it, as batteries that are physically close to intermittent renewables are more likely to abate carbon emissions.
Heatmap Illustration/Form Energy
Type: Energy storage
Developer: Form Energy and Great River Energy
Location: Cambridge, Minnesota
Size: 150 megawatt hours
Operation date: End of 2025
Cost: Unknown; Goal of less than 1/10th cost of utility-scale lithium-ion batteries per megawatt hour
Why it matters: Form Energy first made waves in 2020 when it announced a contract with Great River Energy, a Minnesota electric utility, to build a battery that could store 100 hours’ worth of electricity, which was simply unheard of. Other energy storage companies were just trying to break the 4-hour limitation of lithium-ion, aiming for 8 hours or, at most, 12. Days-long energy storage would be a game changer for maintaining reliability during extreme weather events, storing renewable energy for stretches of cloudy days or windless nights or kicking in when demand peaks. At first, Form’s project was shrouded in mystery. How, exactly, would it do this? But a year later, the company revealed the secret chemistry behind its breakthrough: iron and oxygen. The batteries are filled with iron pellets that, when exposed to oxygen, rust, releasing electrons to the grid. They “charge” by running in reverse, using the electrical current from the grid to convert the rust back to iron.
Since then, the hype has continued to build. Form has raised nearly $1 billion from venture capital and been awarded tens of millions more ingovernment grants. It has signed contracts with six utilities to deploy projects in California, New York, Virginia, Georgia, and Colorado, in addition to Minnesota. All this, despite not having completed a single project yet.
The Great River Energy Project is set to be the first to come online. Originally, the company said it would be operating by the end of 2023; now it’s expected to start construction later this year and begin operating in early 2025, Vice President of Communications Sarah Bray told Heatmap. First, the company has to complete construction of its first factory in Weirton, West Virginia, where it will be producing all of the batteries. Bray said it expects to start high-volume production later this year.
Heatmap Illustration/Getty Images
Type: Onshore wind
Developer: Pattern Energy
Location: Lincoln, Torrance, and San Miguel Counties, New Mexico, with transmission into Arizona
Size: 3,500 megawatts
Operation date: 2026
Cost: The project’s developer, Pattern Energy, has secured $11 billion in financing for the wind and associated transmission project. The cost of the project is estimated to be $8 billion.
Why it matters: This would be the biggest wind project in the country and a test case for a variety of energy policy objectives at both the state and federal level. For California, it would be a key step in decarbonizing its grid, as the state right now imports a large amount of its power, not all of which is carbon-free. For the federal government, it meets several goals — using public lands for carbon-free energy development, plus long-distance transmission to spur energy development across the country and link clean power resources in rural areas to major load centers.
It would also mean an ambitious project could overcome long and concerted opposition. The project was first proposed in 2006, and its transmission line cleared environmental review back in 2015, but it has been mired in lawsuit after lawsuit. Most recently, a coalition of conservation groups and Indian tribes sued to halt construction on the power line portion of the project in Arizona’s San Pedro Valley, claiming that their cultural rights had not been adequately respected. In April, a judge allowed construction to continue, ruling that those claims were barred by the existing federal approvals, which had taken years to attain.
Heatmap Illustration/Getty Images
Type: Offshore wind
Developer: Equinor
Location: South of Long Island, New York
Size: 810 megawatts
Operation date: 2026
Cost: Not available, but an earlier estimate for developing two wind farms was $3 billion. Costs have since risen, but the second farm, Empire Wind 2, is no longer under contract.
Why it matters: The Northeast, and especially New York State, have aggressive aims for decarbonization, with a goal of 70% of the state’s electricity coming from renewables by 2030. The Biden administration also has a specific goal for 30 gigawatts of offshore wind capacity by 2030, and New York has a goal of 9 gigawatts by 2035. These types of high-capacity projects will be essential for the Northeast to decarbonize. The windy coast of the Atlantic Ocean is the most potent large-scale renewable resource in the region, and many of the region’s large load centers, such as New York City and Boston, are on the coast.
Offshore wind, while expensive, can present less permitting hassle and local opposition than onshore wind or utility-scale solar. Empire Wind 1 (along with Sunrise Wind) matters tremendously for New York’s offshore wind program, which has been in development for years but has faced escalating costs and project cancellations. Only one offshore wind project is actually operational in the state, South Fork Wind, which was contracted outside the NYSERDA process and has around 130 megawatts of capacity. If Empire manages to get steel in the water and electrons flowing to the coast, it will be a sign that the Northeast’s — and thus the country’s — decarbonization goals are at least somewhat attainable.
Heatmap Illustration/Getty Images
Type: Transmission
Developers: Transmission Developers, which is owned by the Blackstone Group
Size: 339 miles / 1,250 megawatts
Operation date: 2026
Cost: $6 billion
Why it matters: The Champlain Hudson Power Express, often referred to as CHPE (affectionately pronounced “chippy”) will deliver 1,250 megawatts of hydropower from Quebec into the New York City grid, which is currently about 90% powered by fossil fuels. It is “the most powerful project you’ll never see,” according to its developers, as it is the largest transmission line in the country to be installed entirely underground and underwater.
The project is essential to New York’s goal to build a zero-emission electricity system by 2040. The line will supply an always-available source of clean power to supplement intermittent wind and solar generation and maintain a reliable grid. It has already overcome a number of barriers, including nearly a decade of environmental reviews, uncertainty over whether New York would buy its power, and opposition from conservation advocates concerned about the negative impacts of hydroelectric dams on the environment and on Native communities in Canada.
When it begins operating, New Yorkers won’t just get cleaner power — they should also see air quality benefits almost immediately. The new line is expected to cut air pollution equivalent to that released by 15 of the city’s 16 fossil fuel-fired peaker plants.
Heatmap Illustration/Fervo
Developer: Fervo
Type: Geothermal
Location: Beaver County, Utah
Size: 400 megawatts
Operation date: 2026, although the project isn’t expected to be finished until 2028
Cost: Not disclosed, but Fervo raised $244 million and said that the cash “will support Fervo’s continued operations at Cape Station.”
Why it matters: This enhanced geothermal project is not the first one for Fervo. The company’s Nevada site, Project Red, began providing power for Google data centers in Nevada in November 2023. This planned site, however, will be far bigger: Fervo currently has authorization from the Bureau of Land Management for up to 29 exploratory wells, while the Project Red site had just two. Cape Station broke ground in September 2023, and in the first six months of drilling, Fervo said it reduced costs from drilling by 70% compared to its Project Red wells.
As the grid decarbonizes and major power consumers like technology companies insist on having clean power for their operations, there will be massive and growing demand for so-called “clean firm” power, carbon-free power that is available all the time. Conventional wind and solar is intermittent, and existing battery technology only allows for limited output over time. Fervo’s “enhanced geothermal” technology uses techniques borrowed from the oil and gas industry to be able to produce geothermal power essentially anywhere where there are hot enough rocks underneath the surface of the Earth, as opposed to conventional geothermal, which depends on locating hot enough fluid or stream.
If Fervo can demonstrate that it can produce power at scale at costs comparable to existing conventional geothermal projects, it can expect a massive market for it and demand for more projects.
Heatmap Illustration/TerraPower
Type: Nuclear
Developer: TerraPower
Location: Kemmerrer, Wyoming
Size: 345 megawatts
Operation date: Not available, but the company said in 2021 that it plans to be operational “in the next seven years.” Updated to the 2024 application, that would put it on track for a 2030 completion date.
Cost: Not available, but TerraPower has raised around $1 billion and the federal government has pledged around $2 billion to support the project, which TerraPower has said it will “match … dollar for dollar.”
Why it matters: TerraPower is just one of many companies flogging designs for advanced nuclear reactors, which are smaller and promise to be cheaper to build than America’s existing light-water nuclear reactor fleet. The construction permit application the company submitted in March was a first for a commercial advanced reactor. TerraPower matters as much for the Nuclear Regulatory Commission as it does for anyone else, as it’s a test of whether the NRC can meet Congress and the White House’s preference for a more accelerated approval process for advanced nuclear power.
TerraPower’s design, if successful, would be a landmark for the American nuclear industry. The reactor design calls for cooling with liquid sodium instead of the standard water-cooling of American nuclear plants. This technique promises eventual lower construction costs because it requires less pressure than water (meaning less need for expensive safety systems) and can also store heat, turning the reactor into both a generator and an energy storage system.
While there are a number of existing advanced nuclear designs, several of which involve liquid sodium, Natrium could potentially play well with a renewable-heavy grid by providing steady, unchanging output like a current nuclear reactor as well as discharging stored energy in response to renewables falling off the grid.
Heatmap Illustration/Hy Stor Energy
Type: Hydrogen
Developer:Hy Stor Energy
Location: Project components located throughout Mississippi, with some in Eastern Louisiana
Size: Goal of 340,000 metric tons per year (phase one)
Operation date: 2027
Cost: Initially reported as $3 billion; recently reported as more than $10 billion. (In response to an inquiry from Heatmap, the company replied that it “will be in the multiple billions of dollars.”
Why it matters: Truly carbon-free hydrogen could unlock big emissions reductions across the economy, from fertilizer production, to steelmaking, to marine shipping. But few companies are going to the lengths that Hy Stor is gto ensure its product is really clean. The company is building the first off-grid hydrogen production facility powered entirely by wind and solar. That means Hy Stor will have no problem claiming the new hydrogen production tax credit, which requires companies to match their operations with clean energy sources by the hour — a provision that’s been contested by large portions of the hydrogen industry.
For a company that has never built anything before, the scale of Hy Stor’s Mississippi project is ambitious. The company has acquired about 70,000 acres across Mississippi and Louisiana, along with 10 underground salt domes — mounds of salt buried beneath the Earth’s surface that can be dissolved to form cavernous, skyscraper-sized storage facilities for hydrogen. Those salt domes are the key to Hy Stor’s approach, and what enables the company to rely on intermittent renewables. By storing vast amounts of hydrogen, the company will be able to deliver a steady supply to customers and will also have a backup source of energy for its own operations when wind and solar are less available.
Chief Commercial Officer Claire Behar told Heatmap the company has obtained many of the necessary permits, including for its salt caverns and the plant’s water use. It plans to begin construction at the beginning of 2025, and to have the first phase of the project “in service at scale” by 2027. Hy Stor recently announced a deal to purchase its electrolyzers, devices that split water molecules into hydrogen and oxygen, from a Norwegian company called Nel Hydrogen. It has also signed up a few customers, including a local port and a green steel company.
Heatmap Illustration/Project Cypress
Type: Carbon removal
Developers: Climeworks, Heirloom, and Battelle
Location: Calcasieu Parish, Louisiana
Size: Goal of capturing 1 million metric tons per year
Operation date: About 2030
Cost: Total project cost unknown; eligible for up to $600 million from the Department of Energy for its Regional Direct Air Capture Hubs Program.
Why it matters: Project Cypress might be the most ambitious project to remove carbon from the atmosphere under development in the world. It is a collaboration by two leading direct air capture companies, Heirloom Carbon Technologies and Climeworks, which were among the first to demonstrate their ability to capture carbon directly from the air and store it at commercial scale. Now, the two will be attempting to scale up exponentially, from capturing a few thousands tons per year to a combined million.
Last August, the Department of Energy selected Project Cypress to be one of four direct air capture hubs it will support with $3.5 billion from the Bipartisan Infrastructure Law. In March, the project was awarded its first infusion of $50 million, but the developers will have to do extensive community engagement to continue receiving funding. Battelle, the project developer, told Heatmap the project has also received an additional $51 million in private investment.
Between financing, permitting challenges, renewable energy sourcing, and community opposition, the project is sure to face a bumpy road ahead. The project and its developers have no ties to the oil and gas industry, but that hasn’t done much to win over the support of environmental justice advocates, who see the project as a dangerous distraction from cutting emissions and pollution in Louisiana. But if Project Cypress is successful, it will show the world what direct air capture looks like at climate-relevant scales.
Heatmap Illustration/NET Power
Type: Carbon capture
Developer: NET Power
Location: Ector County, Texas
Size: 300 megawatts
Operation date: Late 2027 or early 2028
Cost: About$1 billion
Why it matters: Oil and gas CEOs love to say that the problem is not fossil fuels, the problem is emissions. NET Power’s technology — a natural gas power plant with zero emissions, carbon or otherwise — could prove to be the ultimate vindication of that statement. In short, NET Power’s system recycles most of the CO2 it produces and uses it to generate more energy. It also utilizes pure oxygen, unlike typical natural gas plants that take in regular air, which is mostly nitrogen. This means that any remaining CO2 not recycled in the plant is relatively pure and easy to capture.
NET Power opened a 50 megawatt demonstration plant in La Porte, Texas, in 2018, and is developing a 300 megawatt commercial plant in Ector County, Texas, in partnership with Occidental Petroleum, Baker Hughes, and Constellation Energy. On a recent earnings call, CEO Danny Rice said the project was “expected to have a lower levelized cost per kilowatt hour than new nuclear, new geothermal, and new hydro.”
The company generated a lot of excitement among energy experts in the fall of 2021 when it announced that its La Porte project had successfully delivered power to the Texas grid. It also raised a lot of money when it went public last summer. But things have been somewhat rocky since. During a December earnings call, NET Power’s president told investors that its first commercial plant would be delayed by at least a year due to supply chain challenges. According to filings with the Securities and Exchange Commission, the company also applied for funding from the Department of Energy’s Office of Clean Energy Demonstrations last year, but was not selected. It has not yet found any third parties to license its technology or offtakers to buy energy from the Ector County plant, and noted in its recent filings that while the La Porte pilot project delivered electricity to the grid, it did not, in fact, deliver “net” power — meaning that it used more power than it generated.
A spokesperson for the company told Heatmap the La Porte facility was solely intended to “prove the technical viability of the NET Power Cycle” and not intended to produce net power. So everything’s now riding on Project Permian.
Editor’s note: This story has been updated to correct a typographical error in the amount of private investment Project Cypress has received.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Defenders of the Inflation Reduction Act have hit on what they hope will be a persuasive argument for why it should stay.
With the fate of the Inflation Reduction Act and its tax credits for building and producing clean energy hanging in the balance, the law’s supporters have increasingly turned to dollars-and-cents arguments in favor of its preservation. Since the election, industry and research groups have put out a handful of reports making the broad argument that in addition to higher greenhouse gas emissions, taking away these tax credits would mean higher electricity bills, as well as the oft-cited increase in greenhouse gas emissions
The American Clean Power Association put out a report in December, authored by the consulting firm ICF, arguing that “energy tax credits will drive $1.9 trillion in growth, creating 13.7 million jobs and delivering 4x return on investment.”
The Solar Energy Industries Association followed that up last month with a letter citing an analysis by Aurora Energy Research, which found that undoing the tax credits for wind, solar, and storage would reduce clean energy deployment by 237 gigawatts through 2040 and cost nearly 100,000 jobs, all while raising bills by hundreds of dollars in Texas and New York. (Other groups, including the conservative environmental group ConservAmerica and the Clean Energy Buyers Association have commissioned similar research and come up with similar results.)
And just this week, Energy Innovation, a clean energy research group that had previously published widely cited research arguing that clean energy deployment was not linked to the run-up in retail electricity prices, published a report that found repealing the Inflation Reduction Act would “increase cumulative household energy costs by $32 billion” over the next decade, among other economic impacts.
The tax credits “make clean energy even more economic than it already is, particularly for developers,” explained Energy Innovation senior director Robbie Orvis. “When you add more of those technologies, you bring down the electricity cost significantly,” he said.
Historically, the price of fossil fuels like natural gas and coal have set the wholesale price for electricity. With renewables, however, the operating costs associated with procuring those fuels go away. The fewer of those you have, “the lower the price drops,” Orvis said. Without the tax credits to support the growth and deployment of renewables, the analysis found that annual energy costs per U.S. household would go up some $48 annually by 2030, and $68 by 2035.
These arguments come at a time when retail electricity prices in much of the country have grown substantially. Since December 2019, average retail electricity prices have risen from about $0.13 per kilowatt-hour to almost $0.18, according to the Bureau of Labor Statistics. In Massachusetts and California, rates are over $0.30 a kilowatt-hour, according to the Energy Information Administration. As Energy Innovation researchers have pointed out, states with higher renewable penetration sometimes have higher rates, including California, but often do not, as in South Dakota, where 77% of its electricity comes from renewables.
Retail electricity prices are not solely determined by fuel costs Distribution costs for maintaining the whole electrical system are also a factor. In California, for example,it’s these costs that have driven a spike in rates, as utilities have had to harden their grids against wildfires. Across the whole country, utilities have had to ramp up capital investment in grid equipment as it’s aged, driving up distribution costs, a 2024 Energy Innovation report argued.
A similar analysis by Aurora Energy Research (the one cited by SEIA) that just looked at investment and production tax credits for wind, solar, and batteries found that if they were removed, electricity bills would increase hundreds of dollars per year on average, and by as much as $40 per month in New York and $29 per month in Texas.
One reason the bill impact could be so high, Aurora’s Martin Anderson told me, is that states with aggressive goals for decarbonizing the electricity sector would still have to procure clean energy in a world where its deployment would have gotten more expensive. New York is targetinga target for getting 70% of its electricity from renewable sources by 2030, while Minnesota has a goal for its utilities to sell 55% clean electricity by 2035 and could see its average cost increase by $22 a month. Some of these states may have to resort to purchasing renewable energy certificates to make up the difference as new generation projects in the state become less attractive.
Bills in Texas, on the other hand, would likely go up because wind and solar investment would slow down, meaning that Texans’ large-scale energy consumption would be increasingly met with fossil fuels (Texas has a Renewable Portfolio Standard that it has long since surpassed).
This emphasis from industry and advocacy groups on the dollars and cents of clean energy policy is hardly new — when the House of Representatives passed the (doomed) Waxman-Markey cap and trade bill in 2009, then-Speaker of the House Nancy Pelosi told the House, “Remember these four words for what this legislation means: jobs, jobs, jobs, and jobs.”
More recently, when Democratic Senators Martin Heinrich and Tim Kaine hosted a press conference to press their case for preserving the Inflation Reduction Act, the email that landed in reporters’ inboxes read “Heinrich, Kaine Host Press Conference on Trump’s War on Affordable, American-Made Energy.”
“Trump’s war on the Inflation Reduction Act will kill American jobs, raise costs on families, weaken our economic competitiveness, and erode American global energy dominance,” Heinrich told me in an emailed statement. “Trump should end his destructive crusade on affordable energy and start putting the interests of working people first.”
That the impacts and benefits of the IRA are spread between blue and red states speaks to the political calculation of clean energy proponents, hoping that a bill that subsidized solar panels in Texas, battery factories in Georgia, and battery storage in Southern California could bring about a bipartisan alliance to keep it alive. While Congressional Republicans will be scouring the budget for every last dollar to help fund an extension of the 2017 Tax Cuts and Jobs Act, a group of House Republicans have gone on the record in defense of the IRA’s tax credits.
“There's been so much research on the emissions impact of the IRA over the past few years, but there's been comparatively less research on the economic benefits and the household energy benefits,” Orvis said. “And I think that one thing that's become evident in the last year or so is that household energy costs — inflation, fossil fuel prices — those do seem to be more top of mind for Americans.”
Opinion modeling from Heatmap Pro shows that lower utility bills is the number one perceived benefit of renewables in much of the country. The only counties where it isn’t the number one perceived benefit are known for being extremely wealthy, extremely crunchy, or both: Boulder and Denver in Colorado; Multnomah (a.k.a. Portland) in Oregon; Arlington in Virginia; and Chittenden in Vermont.
On environmental justice grants, melting glaciers, and Amazon’s carbon credits
Current conditions: Severe thunderstorms are expected across the Mississippi Valley this weekend • Storm Martinho pushed Portugal’s wind power generation to “historic maximums” • It’s 62 degrees Fahrenheit, cloudy, and very quiet at Heathrow Airport outside London, where a large fire at an electricity substation forced the international travel hub to close.
President Trump invoked emergency powers Thursday to expand production of critical minerals and reduce the nation’s reliance on other countries. The executive order relies on the Defense Production Act, which “grants the president powers to ensure the nation’s defense by expanding and expediting the supply of materials and services from the domestic industrial base.”
Former President Biden invoked the act several times during his term, once to accelerate domestic clean energy production, and another time to boost mining and critical minerals for the nation’s large-capacity battery supply chain. Trump’s order calls for identifying “priority projects” for which permits can be expedited, and directs the Department of the Interior to prioritize mineral production and mining as the “primary land uses” of federal lands that are known to contain minerals.
Critical minerals are used in all kinds of clean tech, including solar panels, EV batteries, and wind turbines. Trump’s executive order doesn’t mention these technologies, but says “transportation, infrastructure, defense capabilities, and the next generation of technology rely upon a secure, predictable, and affordable supply of minerals.”
Anonymous current and former staffers at the Environmental Protection Agency have penned an open letter to the American people, slamming the Trump administration’s attacks on climate grants awarded to nonprofits under the Inflation Reduction Act’s Greenhouse Gas Reduction Fund. The letter, published in Environmental Health News, focuses mostly on the grants that were supposed to go toward environmental justice programs, but have since been frozen under the current administration. For example, Climate United was awarded nearly $7 billion to finance clean energy projects in rural, Tribal, and low-income communities.
“It is a waste of taxpayer dollars for the U.S. government to cancel its agreements with grantees and contractors,” the letter states. “It is fraud for the U.S. government to delay payments for services already received. And it is an abuse of power for the Trump administration to block the IRA laws that were mandated by Congress.”
The lives of 2 billion people, or about a quarter of the human population, are threatened by melting glaciers due to climate change. That’s according to UNESCO’s new World Water Development Report, released to correspond with the UN’s first World Day for Glaciers. “As the world warms, glaciers are melting faster than ever, making the water cycle more unpredictable and extreme,” the report says. “And because of glacial retreat, floods, droughts, landslides, and sea-level rise are intensifying, with devastating consequences for people and nature.” Some key stats about the state of the world’s glaciers:
In case you missed it: Amazon has started selling “high-integrity science-based carbon credits” to its suppliers and business customers, as well as companies that have committed to being net-zero by 2040 in line with Amazon’s Climate Pledge, to help them offset their greenhouse gas emissions.
“The voluntary carbon market has been challenged with issues of transparency, credibility, and the availability of high-quality carbon credits, which has led to skepticism about nature and technological carbon removal as an effective tool to combat climate change,” said Kara Hurst, chief sustainability officer at Amazon. “However, the science is clear: We must halt and reverse deforestation and restore millions of miles of forests to slow the worst effects of climate change. We’re using our size and high vetting standards to help promote additional investments in nature, and we are excited to share this new opportunity with companies who are also committed to the difficult work of decarbonizing their operations.”
The Bureau of Land Management is close to approving the environmental review for a transmission line that would connect to BluEarth Renewables’ Lucky Star wind project, Heatmap’s Jael Holzman reports in The Fight. “This is a huge deal,” she says. “For the last two months it has seemed like nothing wind-related could be approved by the Trump administration. But that may be about to change.”
BLM sent local officials an email March 6 with a draft environmental assessment for the transmission line, which is required for the federal government to approve its right-of-way under the National Environmental Policy Act. According to the draft, the entirety of the wind project is sited on private property and “no longer will require access to BLM-administered land.”
The email suggests this draft environmental assessment may soon be available for public comment. BLM’s web page for the transmission line now states an approval granting right-of-way may come as soon as May. BLM last week did something similar with a transmission line that would go to a solar project proposed entirely on private lands. Holzman wonders: “Could private lands become the workaround du jour under Trump?”
Saudi Aramco, the world’s largest oil producer, this week launched a pilot direct air capture unit capable of removing 12 tons of carbon dioxide per year. In 2023 alone, the company’s Scope 1 and Scope 2 emissions totalled 72.6 million metric tons of carbon dioxide equivalent.
If you live in Illinois or Massachusetts, you may yet get your robust electric vehicle infrastructure.
Robust incentive programs to build out electric vehicle charging stations are alive and well — in Illinois, at least. ComEd, a utility provider for the Chicago area, is pushing forward with $100 million worth of rebates to spur the installation of EV chargers in homes, businesses, and public locations around the Windy City. The program follows up a similar $87 million investment a year ago.
Federal dollars, once the most visible source of financial incentives for EVs and EV infrastructure, are critically endangered. Automakers and EV shoppers fear the Trump administration will attack tax credits for purchasing or leasing EVs. Executive orders have already suspended the $5 billion National Electric Vehicle Infrastructure Formula Program, a.k.a. NEVI, which was set up to funnel money to states to build chargers along heavily trafficked corridors. With federal support frozen, it’s increasingly up to the automakers, utilities, and the states — the ones with EV-friendly regimes, at least — to pick up the slack.
Illinois’ investment has been four years in the making. In 2021, the state established an initiative to have a million EVs on its roads by 2030, and ComEd’s new program is a direct outgrowth. The new $100 million investment includes $53 million in rebates for business and public sector EV fleet purchases, $38 million for upgrades necessary to install public and private Level 2 and Level 3 chargers, stations for non-residential customers, and $9 million to residential customers who buy and install home chargers, with rebates of up to $3,750 per charger.
Massachusetts passed similar, sweeping legislation last November. Its bill was aimed to “accelerate clean energy development, improve energy affordability, create an equitable infrastructure siting process, allow for multistate clean energy procurements, promote non-gas heating, expand access to electric vehicles and create jobs and support workers throughout the energy transition.” Amid that list of hifalutin ambition, the state included something interesting and forward-looking: a pilot program of 100 bidirectional chargers meant to demonstrate the power of vehicle-to-grid, vehicle-to-home, and other two-way charging integrations that could help make the grid of the future more resilient.
Many states, blue ones especially, have had EV charging rebates in places for years. Now, with evaporating federal funding for EVs, they have to take over as the primary benefactor for businesses and residents looking to electrify, as well as a financial level to help states reach their public targets for electrification.
Illinois, for example, saw nearly 29,000 more EVs added to its roads in 2024 than 2023, but that growth rate was actually slower than the previous year, which mirrors the national narrative of EV sales continuing to grow, but more slowly than before. In the time of hostile federal government, the state’s goal of jumping from about 130,000 EVs now to a million in 2030 may be out of reach. But making it more affordable for residents and small businesses to take the leap should send the numbers in the right direction, as will a state-backed attempt to create more public EV chargers.
The private sector is trying to juice charger expansion, too. Federal funding or not, the car companies need a robust nationwide charging network to boost public confidence as they roll out more electric offerings. Ionna — the charging station partnership funded by the likes of Hyundai, BMW, General Motors, Honda, Kia, Mercedes-Benz, Stellantis, and Toyota — is opening new chargers at Sheetz gas stations. It promises to open 1,000 new charging bays this year and 30,000 by 2030.
Hyundai, being the number two EV company in America behind much-maligned Tesla, has plenty at stake with this and similar ventures. No surprise, then, that its spokesperson told Automotive Dive that Ionna doesn’t rely on federal dollars and will press on regardless of what happens in Washington. Regardless of the prevailing winds in D.C., Hyundai/Kia is motivated to support a growing national network to boost the sales of models on the market like the Hyundai Ioniq5 and Kia EV6, as well as the company’s many new EVs in the pipeline. They’re not alone. Mercedes-Benz, for example, is building a small supply of branded high-power charging stations so its EV drivers can refill their batteries in Mercedes luxury.
The fate of the federal NEVI dollars is still up in the air. The clearinghouse on this funding shows a state-by-state patchwork. More than a dozen states have some NEVI-funded chargers operational, but a few have gotten no further than having their plans for fiscal year 2024 approved. Only Rhode Island has fully built out its planned network. It’s possible that monies already allocated will go out, despite the administration’s attempt to kill the program.
In the meantime, Tesla’s Supercharger network is still king of the hill, and with a growing number of its stations now open to EVs from other brands (and a growing number of brands building their new EVs with the Tesla NACS charging port), Superchargers will be the most convenient option for lots of electric drivers on road trips. Unless the alternatives can become far more widespread and reliable, that is.
The increasing state and private focus on building chargers is good for all EV drivers, starting with those who haven’t gone in on an electric car yet and are still worried about range or charger wait times on the road to their destination. It is also, by the way, good news for the growing number of EV folks looking to avoid Elon Musk at all cost.