You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
You probably know your car’s fuel economy. But do you know its emissions per mile?
If you drive a gas-powered car, you almost certainly know its fuel economy. But do you know how much carbon your car emits?
Probably not. Here in America, at least, it’s not something we think about in concrete terms, like miles per gallon or the money we save at the pump by buying a more efficient car — but it probably should be.
In general, there’s a direct correlation between fuel consumption and CO2 emissions: the more gas you use, the more CO2 your car produces. That means we often use miles per gallon as a shorthand for pollution. But if you’re concerned about your carbon footprint, there’s clarity in knowing the actual emissions produced by your car.
In other parts of the world, governments make sure people can turn knowledge of CO2 consumption into power. If you’ve ever been to Europe and seen a car ad anywhere, you’ve probably seen a “Closed course, professional driver”-style line of text detailing that vehicle’s CO2 emissions. That’s because they have to do this. The European Union has for years required automakers to disclose their cars’ emissions in ads across multiple platforms.
In America, these carbon-related metrics aren’t nearly as publicized. The closest equivalents we have are the metrics on a new car’s window sticker, which are required for consumer transparency purposes. Here you’ll find an important figure: CO2 emissions per mile. It’s tiny, like fine print, but it’s there. It’s essentially the same thing you see in those European ads, just not using the Metric system, obviously, and they go out of their way to drive this point home; us, not so much.
These ratings come from the EPA. The last major revision to how these labels look came about a decade back. But it’s also part of a bigger, more confusing package on the sticker. On one graph, you see a rating of fuel economy and CO2 emissions combined together, while the “smog rating” measures pollutants like nitrogen oxides, carbon monoxide and particulate matter. These are rated on a not-very-helpful scale of 1 through 10.
But unlike in Europe, our CO2 emissions figures aren’t really something we see or consider when buying a car; they don’t even appear in car reviews, generally. I’ve probably written thousands of those and I’ve never once included it.
Now, here’s what the label doesn’t say, but the EPA does: the average passenger vehicle in America emits about 400 grams of CO2 per mile. If you have the free time to go to FuelEconomy.gov, you can find out how your car ranks there and it could — should, I’d argue — help inform your next car purchase.
Take my car, a Mazda 3 hatchback with the model’s larger 2.5-liter engine. The EPA says it produces 301 grams of CO2 per mile, so better than average and way better than, say, a 2023 Bronco Raptor example, a high-performance off-road SUV that’s fun but emits 577 grams of CO2 per mile.
Let’s say I decide I can go a little greener than my car, but I’m not ready to completely break up with gasoline just yet; a new 2023 Toyota Prius hybrid puts out just 155 grams of CO2 per mile in its base trim. What a champion, and further proof that hybrids are a great tool for bringing down emissions right now.
Now, if I need more room for my 12-pound dog (he can take up a surprising amount of space when he wants to) I could get a Honda CR-V Hybrid, which puts out 237 grams of CO2 per mile. Not as good as the smaller Prius, but still better than average.
Internal combustion engines have gotten much cleaner over the years and smaller engines obviously emit less. A Chevrolet Equinox with a small, turbocharged four-cylinder engine puts out 310 grams of CO2 per mile, while a V8-powered Chevrolet Tahoe emits 527 grams of CO2 over a mile.
But car size matters here too. If I had purchased a bigger 2018 Mazda CX-5 crossover instead of my hatchback, I’d be putting out an extra 21 grams of CO2 per mile even though the cars have the same engine. Plenty of people might make the size tradeoff even if it meant a hit to fuel economy, but how might they feel if they knew the difference in CO2 as well?
Now let’s put all of those numbers into context. The EPA says the average American vehicle — something it claims does about 22.2 miles per gallon and drives 11,500 miles per year, which all tracks with my experience — emits about 4.6 metric tons of CO2 per year. That’s one vehicle, and just an average one to boot. In the grand scheme of things, that one vehicle contributed to what the U.S. Energy Information Administration claims was 1.476 billion metric tons of CO2 in 2022 from the entire transportation sector — or about 30% of total U.S. energy-related CO2 emissions that year. Granted, you can’t put that whole number on cars, but it’d be great if consumers knew more about what parts their purchases play in all of it.
Of course, there’s a clear winner here: electric vehicles. They all emit 0 grams of CO2 per mile, underscoring how important EVs are to decarbonization.
Still, that figure — while vital — elides a lot of differences. A Tesla Model 3 and a GMC Hummer EV both have no tailpipe emissions, which is true. But one is a compact sedan and the other is a 9,600-pound behemoth of an SUV; in fact, it’s so heavy it’s not even required to list such figures on its window sticker, so good luck finding it on the EPA’s website. The Hummer will clearly need much more energy to fully charge than a small Tesla. The two may be EVs but they are not created equal. It would be nice to see some kind of data tied to charging, despite the many variables involved there, particularly since 60% of our electricity is still generated by fossil fuels.
The only thing we have to easily compare them is MPGe, the deeply flawed, barely understood metric for ranking the energy consumption of hybrid and electric cars. That would be miles per gallon equivalent, an EPA-created metric that measures energy consumption in comparison to a gasoline vehicle. But how useful is that, really? Besides telling you the obvious, that EVs are more efficient at how they use energy overall than ICE vehicles, it doesn’t help you know anything about emissions or even energy costs. It’s also a terrible way to explain to someone what really matters, as The Drive pointed out last year: lower efficiency means charging more frequently.
Even better would be a rating that lets you compare life-cycle emissions — i.e. not just the emissions from tailpipes, but the emissions generated by the construction of a vehicle. Here, you’ll find some surprising data: while EVs overall have much lower life cycle emissions than gas cars, the biggest EVs end up just as polluting as small gasoline cars by that metric because they are so resource-intensive to make.
Yet most automakers don’t publish that data, even if they know it themselves. What we have are a handful of estimates cobbled together by enterprising researchers and journalists. There’s definitely no comprehensive database. And the EPA’s way of speaking to consumers still feels focused on what they’ll spend at the pump.
The point is, it would be amazing if customers were made more aware of the CO2 impact from their cars — from tailpipe emissions or from charging, although it’s been proven time and time again the latter is less harmful than the former long-term. I would love to see American buyers start to consider emissions the same way we have thought about fuel economy for decades. Perhaps this would entice people to make better purchasing decisions, even if they come down to slight differences between two competing vehicles.
I don’t love putting environmentalism solely on ordinary, individual people; our decisions matter, but arguably less so than major corporations. We purchase the cars we’re given, and thanks in part to our absurd regulations, small cars are dying and the market has shifted to SUVs and trucks. What’s worse, EVs are still mostly very expensive and not nearly enough places offer choices like safe bike lanes or widely available public transit.
But I think putting CO2 emissions, and their effects, more in front of drivers’ minds is a good start. It’s time for all of us to try and think beyond just saving on gas.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A war of attrition is now turning in opponents’ favor.
A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.
Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”
But tucked in its press release was an admission from the company’s vice president of development Derek Moretz: this was also about the town, which had enacted a bylaw significantly restricting solar development that the company was until recently fighting vigorously in court.
“There are very few areas in the Commonwealth that are feasible to reach its clean energy goals,” Moretz stated. “We respect the Town’s conservation go als, but it is clear that systemic reforms are needed for Massachusetts to source its own energy.”
This stems from a story that probably sounds familiar: after proposing the projects, PureSky began reckoning with a burgeoning opposition campaign centered around nature conservation. Led by a fresh opposition group, Smart Solar Shutesbury, activists successfully pushed the town to drastically curtail development in 2023, pointing to the amount of forest acreage that would potentially be cleared in order to construct the projects. The town had previously not permitted facilities larger than 15 acres, but the fresh change went further, essentially banning battery storage and solar projects in most areas.
When this first happened, the state Attorney General’s office actually had PureSky’s back, challenging the legality of the bylaw that would block construction. And PureSky filed a lawsuit that was, until recently, ongoing with no signs of stopping. But last week, shortly after the Treasury Department unveiled its rules for implementing Trump’s new tax and spending law, which basically repealed the Inflation Reduction Act, PureSky settled with the town and dropped the lawsuit – and the projects went away along with the court fight.
What does this tell us? Well, things out in the country must be getting quite bleak for solar developers in areas with strident and locked-in opposition that could be costly to fight. Where before project developers might have been able to stomach the struggle, money talks – and the dollars are starting to tell executives to lay down their arms.
The picture gets worse on the macro level: On Monday, the Solar Energy Industries Association released a report declaring that federal policy changes brought about by phasing out federal tax incentives would put the U.S. at risk of losing upwards of 55 gigawatts of solar project development by 2030, representing a loss of more than 20 percent of the project pipeline.
But the trade group said most of that total – 44 gigawatts – was linked specifically to the Trump administration’s decision to halt federal permitting for renewable energy facilities, a decision that may impact generation out west but has little-to-know bearing on most large solar projects because those are almost always on private land.
Heatmap Pro can tell us how much is at stake here. To give you a sense of perspective, across the U.S., over 81 gigawatts worth of renewable energy projects are being contested right now, with non-Western states – the Northeast, South and Midwest – making up almost 60% of that potential capacity.
If historical trends hold, you’d expect a staggering 49% of those projects to be canceled. That would be on top of the totals SEIA suggests could be at risk from new Trump permitting policies.
I suspect the rate of cancellations in the face of project opposition will increase. And if this policy landscape is helping activists kill projects in blue states in desperate need of power, like Massachusetts, then the future may be more difficult to swallow than we can imagine at the moment.
And more on the week’s most important conflicts around renewables.
1. Wells County, Indiana – One of the nation’s most at-risk solar projects may now be prompting a full on moratorium.
2. Clark County, Ohio – Another Ohio county has significantly restricted renewable energy development, this time with big political implications.
3. Daviess County, Kentucky – NextEra’s having some problems getting past this county’s setbacks.
4. Columbia County, Georgia – Sometimes the wealthy will just say no to a solar farm.
5. Ottawa County, Michigan – A proposed battery storage facility in the Mitten State looks like it is about to test the state’s new permitting primacy law.
A conversation with Jeff Seidman, a professor at Vassar College.
This week’s conversation is with Jeff Seidman, a professor at Vassar College and an avid Heatmap News reader. Last week Seidman claimed a personal victory: he successfully led an effort to overturn a moratorium on battery storage development in the town of Poughkeepsie in Hudson Valley, New York. After reading a thread about the effort he posted to BlueSky, I reached out to chat about what my readers might learn from his endeavors – and how they could replicate them, should they want to.
The following conversation was lightly edited for clarity.
So how did you decide to fight against a battery storage ban? What was your process here?
First of all, I’m not a professional in this area, but I’ve been learning about climate stuff for a long time. I date my education back to when Vox started and I read my first David Roberts column there. But I just happened to hear from someone I know that in the town of Poughkeepsie where I live that a developer made a proposal and local residents who live nearby were up in arms about it. And I heard the town was about to impose a moratorium – this was back in March 2024.
I actually personally know some of the town board members, and we have a Democratic majority who absolutely care about climate change but didn’t particularly know that battery power was important to the energy transition and decarbonizing the grid. So I organized five or six people to go to the town board meeting, wrote a letter, and in that initial board meeting we characterized the reason we were there as being about climate.
There were a lot more people on the other side. They were very angry. So we said do a short moratorium because every day we’re delaying this, peaker plants nearby are spewing SOx and NOx into the air. The status quo has a cost.
But then the other side, they were clearly triggered by the climate stuff and said renewables make the grid more expensive. We’d clearly pressed a button in the culture wars. And then we realized the mistake, because we lost that one.
When you were approaching getting this overturned, what considerations did you make?
After that initial meeting and seeing how those mentions of climate or even renewables had triggered a portion of the board, and the audience, I really course-corrected. I realized we had to make this all about local benefits. So that’s what I tried to do going forward.
Even for people who were climate concerned, it was really clear that what they perceived as a present risk in their neighborhood was way more salient than an abstract thing like contributing to the fight against climate change globally. So even for people potentially on your side, you have to make it about local benefits.
The other thing we did was we called a two-hour forum for the county supervisors and mayor’s association because we realized talking to them in a polarized environment was not a way to have a conversation. I spoke and so did Paul Rogers, a former New York Fire Department lieutenant who is now in fire safety consulting – he sounds like a firefighter and can speak with a credibility that I could never match in front of, for example, local fire chiefs. Winning them over was important. And we took more than an hour of questions.
Stage one was to convince them of why batteries were important. Stage two was to show that a large number of constituents were angry about the moratorium, but that Republicans were putting on a unified front against this – an issue to win votes. So there was a period where Democrats on the Poughkeepsie board were convinced but it was politically difficult for them.
But stage three became helping them do the right thing, even with the risk of there being a political cost.
What would you say to those in other parts of the country who want to do what you did?
If possible, get a zoning law in place before there is any developer with a specific proposal because all of the opposition to this project came from people directly next to the proposed project. Get in there before there’s a specific project site.
Even if you’re in a very blue city, don’t make it primarily about climate. Abstract climate loses to non-abstract perceived risk every time. Make it about local benefits.
To the extent you can, read and educate yourself about what good batteries provide to the grid. There’s a lot of local economic benefits there.
I am trying to put together some of the resources I used into a packet, a tool kit, so that people elsewhere can learn from it and draw from those resources.
Also, the more you know, the better. All those years of reading David Roberts and Heatmap gave me enough knowledge to actually answer questions here. It works especially when you have board members who may be sympathetic but need to be reassured.