You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
You can take advantage of rising inventory.

First of all, I want everyone to just take a deep breath and calm down.
Despite data that indicates much slower sales than many anticipated, the American electric vehicle market is not collapsing before it ever really took off. EVs are not failed experiments, public and private investments into battery plants and public chargers are not about to evaporate, and we are not collectively doomed to be driving coal-rolling trucks for lack of a better option until we’ve extinguished most non-cockroach life on this planet.
Three things are true, however. The first is that EVs remain expensive like any new technology, and while that means they aren’t flying off dealer lots in record time, sales are still growing fast — including globally. The second is that Tesla is still posting record revenues and huge sales. Its rapid-fire price cuts have paid off handsomely; the Model 3 and Model Y are lapping everyone else in the EV race because they’re screaming deals. That fact alone has me not worried about declining EV demand.
The third thing is that now may actually be a good time to buy an EV, if you know where to look.
Do you feel better now?
EV adoption remains a long-term (though increasingly difficult) goal for many automakers. More EVs are coming and prices are expected to drop over time as the technology develops and batteries are built stateside. But while immediate action is needed on multiple fronts to reduce carbon emissions, it’s tough to ask many families to spend $60,000 on a Hyundai in this economy. And EVs piling up at car dealerships reflects this trend, but it doesn’t reflect a lack of interest, experts told me.
“I don't think that's fair to say no one wants EVs,” said Brian Moody, the executive editor of Cox Automotive, the research firm that sounded the alarm about EV inventory increasing. “I don't think that's accurate.”
Moody added, “One thing that we see is that about 50% of shoppers say they're open to the idea of getting an electric car, so that's a pretty good number and that probably bodes well for the future. But that doesn't necessarily translate to sales tomorrow.”
Get one great climate story in your inbox every day:
Cox Automotive’s data indicates U.S. car dealers had a more than 100-day supply of EVs on their lots on average by the end of June — 60 days is considered healthy — and the average EV lists for $63,486. So at a time when interest rates are high and car buyers’ budgets are squeezed, Moody said they may find a $36,000 Hyundai Sonata Hybrid more appealing than a $50,000 fully electric Hyundai Ioniq 6. “I think the good thing about EVs today is they provide consumers a choice,” he said.
Tom McParland has firsthand experience helping buyers to navigate these choices. He runs a consulting service that helps people purchase cars and contributes car-buying advice columns to publications like Jalopnik. (Full Disclosure: I was previously editor-in-chief of that site, where he was one of our contributors.) His service helps about 20 to 30 people a month to buy a car.
McParland said that last year, he was turning away customers who wanted to buy a Ford F-150 Lightning or a Mustang Mach-E because there were none to be found or because dealer markups were so extraordinarily high.
Now, he’s seen a “mixed bag” lately when it comes to EVs: “If I look at how many of my clients in 2023 are requesting EVs or plug-in [hybrids], there’s definitely an uptick overall compared to last year,” he said. However, “as soon as the tax credit rules changed, I saw a big dropoff in the level of interest for those cars,” he said. “Nobody was asking me for Ioniq 5s,” he added, referring to Hyundai’s cyberpunk-looking Model Y competitor.
For a few months at the start of the year, nearly every EV qualified for generous tax breaks. But by spring, only North American-built cars with North American-built batteries could get the incentives, excluding options from Kia, Hyundai, Volvo, BMW, Toyota, and others. And while car dealers don’t want those cars taking up space on lots forever, there’s only so much they can do — or are willing to do, McParland said.
“Dealers can only go so deep until the math no longer makes sense,” he said. “They are not going to discount that car 20% and lose 50% on the back end just to move it.” Also, while a kind of loophole allows more brands to qualify for tax breaks if they’re leased, McParland said he’s a bit skeptical that this always equals a good deal because the price cuts are baked into a lower residual value at the end of your term.
But it’s not that buyers aren’t willing to go green at all. To Moody’s point about hybrids, McParland said he’s seen a huge spike in buyer interest in those cars this year.
“If somebody comes to me looking for a Honda, they don't care about a gas Honda,” he said. “They want an Accord Hybrid, or they want a CR-V hybrid. Because the price delta between the gas and the hybrid version is not much.”
That’s a net positive for the planet. Hybrid cars are still a remarkable tool for reducing emissions right now in ways that may be easier to live with until a more robust EV charging network gets built out. Having said that, McParland told me to forget about deals on hybrid cars. “There’s no deals there because the demand is so high,” he said.
So where can you get deals on a green car right now, especially one that doesn’t use gasoline at all?
Some cursory hunting revealed a number of 2022 model-year EVs that are still “new” cars — maybe they’ve been at the dealership that long and just have a few hundred or thousand miles on them — and are going for almost fire-sale prices. Take this 2022 Hyundai Ioniq 5 with just 2,562 miles for a very tempting $40,000 even (about $6,000 to $10,000 off the average price.) Or this Kia EV6 with 7,353 miles and a $37,991 price tag. I’d seen a few examples recently of the Mustang Mach-E that also fit that bill.
There’s also still the Chevrolet Bolt, which is soon to be discontinued and has some outdated charging tech but is going out with a mid-$20,000 fire-sale bang. Not only are they eligible for the full $7,500 tax credit, but some states are giving extra incentives. In Colorado, for instance, you might be able to pick up one of the last new Bolts for around $15,000 after all the tax credits kick in.
On the manufacturer's side, Ford slashed the prices of the F-150 Lightning pickup (after raising them this year amid supply chain issues) by up to $10,000 this week, leaving the base Lightning Pro at $51,990. Now, that’s still more expensive than it was a year ago, but hey, a deal’s a deal. (It’s also eligible for the full $7,500 tax credit.)
McParland added that he’s seen some more aggressive deals on BMW and Mercedes-Benz’s electric models as part of their summer sales events as well. One reason might be that neither automaker has any fully electric car that qualifies for a U.S. tax credit at the moment. (For the record, I’m a fan of BMW’s i4 electric sport sedan, and other people seem to be too; BMW’s actually doing very well on the EV sales front this year.)
“We're seeing some manufacturer incentives… more so on the higher end of the market,” McParland said. So maybe not great news if you want a commuter on a budget, but not bad if you can stand to treat yourself a bit.
And there’s always Tesla. While McParland said some of his customers have been turned off by the CEO’s recent antics or just want some variety — “People have come to me, and this is the exact conversation. I want EV but I don't want to buy a Tesla, that sort of thing,” he said — the fact is that the cars’ specs are still among the best out there. So are the deals. Between Tesla’s own price cuts and the EV tax incentives, these are hot sellers for good reason right now. “And you’ve got people looking into used ones now that there are so many out there,” McParland said.
Moody added that there are other ways to save on EV ownership besides just the car, too. Many manufacturers offer deals on home chargers or are throwing them in for free. There are also state and federal tax incentives to help cover the cost of charging. “I would not just call a place someplace up and buy [a charger,]” he said. “I would do a lot of research and see if I could get one for free or at a discounted rate.”
Finally, McParland said patience may be a virtue as the year goes on and new model-year cars hit dealerships. That’s when they get more aggressive at moving the older stuff.
“My prediction is that as we start to get closer to the fall, the deals might even get better than they are now,” he said. “I think we're still in the early stages of this ‘too much inventory’ situation.”
America is past the “early adopter” stage of EVs, when people were evangelizing gas-free cars but had few choices and terrible options for living with them. But we’re not in the critical mass stage, either. Getting to that point could take a number of years; transitioning to zero-emission transportation was never going to happen overnight, even if we need it to.
In the meantime, if you see EV ownership in your future, be on the lookout for great deals as much as you are for public chargers near your place.
Read more about EVs:
Tesla Is Still Winning the EV Race
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.
Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.
So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.
It’s still rare to launch a fund abroad, and yet a growing number of U.S. companies and investors are turning to Europe to pilot new technology and validate their concepts before scaling up in more capital-constrained domestic markets
Europe’s emissions trading scheme — and the comparably stable policy environment that makes investors confident it will last — gives emergent climate tech a greater chance at being cost competitive with fossil fuels. For Bronson, this made building a climate tech portfolio somewhere in Europe somewhat of a no-brainer. “In Europe, the regulations were essentially 10 years ahead of where we wanted the Americas and the Asias to be,” Bronson told me. “There were stricter regulations with faster deadlines. And they meant it.”
Of the choice to locate in Ireland, SOSV is in many ways following a model piloted by tech giants Google, Microsoft, Apple, and Meta, all of which established an early presence in the country as a gateway to the broader European market. Given Ireland’s English-speaking population, low corporate tax rate, business-friendly regulations, and easy direct flights to the continent, it’s a sensible choice — though as Bronson acknowledged, not a move that a company successfully fundraising in the U.S. would make.
It can certainly be tricky to manage projects and teams across oceans, and U.S. founders often struggle to find overseas talent with the level of technical expertise and startup experience they’re accustomed to at home. But for the many startups struggling with the fundraising grind, pivoting to Europe can offer a pathway for survival.
It doesn’t hurt that natural gas — the chief rival for many clean energy technologies — is quite a bit more expensive in Europe, especially since Russia’s invasion of Ukraine in 2022. “A lot of our commercial focus today is in Europe because the policy framework is there in Europe, and the underlying economics of energy are very different there,” Raffi Garabedian, CEO of Electric Hydrogen, told me. The company builds electrolyzers that produce green hydrogen, a clean fuel that can replace natural gas in applications ranging from heavy industry to long-haul transport.
But because gas is so cheap in the U.S., the economics of the once-hyped “hydrogen economy” have gotten challenging as policy incentives have disappeared. With natural gas in Texas hovering around $3 per thousand cubic feet, clean hydrogen just can’t compete. But “you go to Spain, where renewable power prices are comparable to what they are in Texas, and yet natural gas is eight bucks — because it’s LNG and imported by pipeline — it’s a very different context,” Garabedian explained.
Two years ago, the EU adopted REDIII — the third revision of its Renewable Energy Directive — which raises the bloc’s binding renewable share target to 42.5% by 2030 and broadens its scope to cover more sectors, including emissions from industrial processes and buildings. It also sets new rules for hydrogen, stipulating that by 2030, at least 42% of the hydrogen used for industrial processes such as steel or chemical production must be green — that is, produced using renewable electricity — increasing to 60% by 2035.
Member countries are now working to transpose these continent-wide regulations into national law, a process Garabedian expects to be finalized by the end of this year or early next. Then, he told me, companies will aim to scale up their projects to ensure that they’re operational by the 2030 deadline. Considering construction timelines, that “brings you to next year or the year after for when we’re going to see offtakes signed at much larger volumes,” Garabedian explained. Most European green hydrogen projects are aiming to help decarbonize petroleum, petrochemical, and biofuel refining, of all things, by replacing hydrogen produced via natural gas.
But that timeline is certainly not a given. Despite its many incentives, Europe has not been immune to the rash of global hydrogen project cancellations driven by high costs and lower than expected demand. As of now, while there are plenty of clean hydrogen projects in the works, only a very small percent have secured binding offtake agreements, and many experts disagree with Garabedian’s view that such agreements are either practical or imminent. Either way, the next few years will be highly determinative.
The thermal battery company Rondo Energy is also looking to the continent for early deployment opportunities, the startup’s Chief Innovation Officer John O’Donnell told me, though it started off close to home. Just a few weeks ago, Rondo turned on its first major system at an oil field in Central California, where it replaced a natural gas-powered boiler with a battery that charges from an off-grid solar array and discharges heat directly to the facility.
Much of the company’s current project pipeline, however, is in Europe, where it’s planning to install its batteries at a chemical plant in Germany, an industrial park in Denmark, and a brewery in Portugal. One reason these countries are attractive is that their utilities and regulators have made it easier for Rondo’s system to secure electricity at wholesale prices, thus allowing the company to take advantage of off-peak renewable energy rates to charge when energy is cheapest. U.S. regulations don’t readily allow for that.
“Every single project there, we’re delivering energy at a lower cost,” O’Donnell told me. He too cited the high price of natural gas in Europe as a key competitive advantage, pointing to the crippling effect energy prices have had on the German chemical industry in particular. “There’s a slow motion apocalypse because of energy supply that’s underway,” he said.
Europe has certainly proven to be a more welcoming and productive policy environment than the U.S., particularly since May, when the Trump administration cut billions of dollars in grants for industrial decarbonization projects — including two that were supposed to incorporate Rondo’s tech. One $75 million grant was for the beverage company Diageo, which planned to install heat batteries to decarbonize its operations in Illinois and Kentucky. Another $375 million grant was for the chemicals company Eastman, which wanted to use Rondo’s batteries at a plastics recycling plant in Texas.
While nobody knew exactly what programs the Trump administration would target, John Tough, co-founder at the software-focused venture firm Energize Capital, told me he’s long understood what a second Trump presidency would mean for the sector. Even before election night, Tough noticed U.S. climate investors clamming up, and was already working to raise a $430 million fund largely backed by European limited partners. So while 90% of the capital in the firm’s first fund came from the U.S., just 40% of the capital in this latest fund does.
“The European groups — the pension funds, sovereign wealth funds, the governments — the conviction they have is so high in climate solutions that our branding message just landed better there,” Tough told me. He estimates that about a quarter to a third of the firm’s portfolio companies are based in Europe, with many generating a significant portion of their revenue from the European market.
But that doesn’t mean it was easy for Energize to convince European LPs to throw their weight behind this latest fund. Since the American market often sets the tone for the global investment atmosphere, there was understandable concern among potential participants about the performance of all climate-focused companies, Tough explained.
Ultimately however, he convinced them that “the data we’re seeing on the ground is not consistent with the rhetoric that can come from the White House.” The strong performance of Energize’s investments, he said, reveals that utility and industrial customers are very much still looking to build a more decentralized, digitized, and clean grid. “The traction of our portfolio is actually the best it’s ever been, at the exact same time that the [U.S.-based] LPs stopped focusing on the space,” Tough told me.
But Europe can’t be a panacea for all of U.S. climate tech’s woes. As many of the experts I talked to noted, while Europe provides a strong environment for trialing new tech, it often lags when it comes to scale. To be globally competitive, the companies that are turning to Europe during this period of turmoil will eventually need to bring down their costs enough to thrive in markets that lack generous incentives and mandates.
But if Europe — with its infinitely more consistent and definitively more supportive policy landscape — can serve as a test bed for demonstrating both the viability of novel climate solutions and the potential to drive down their costs, then it’s certainly time to go all in. Because for many sectors — from green hydrogen to thermal batteries and sustainable transportation fuels — the U.S. has simply given up.
Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.
The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.
“Somehow the reduction in enthusiasm of the Global North is showing that the Global South is moving,” Corrêa do Lago told reporters in Belém, according to The Guardian. “It is not just this year, it has been moving for years, but it did not have the exposure that it has now.”

New York regulators approved an underwater gas pipeline, reversing past decisions and teeing up what could be the first big policy fight between Governor Kathy Hochul and New York City Mayor-elect Zohran Mamdani. The state Department of Environmental Conservation issued what New York Focus described as crucial water permits for the Northeast Supply Enhancement project, a line connecting New York’s outer borough gas network to the fracking fields of Pennsylvania. The agency had previously rejected the project three times. The regulators also announced that the even larger Constitution pipeline between New York and New England would not go ahead. “We need to govern in reality,” Hochul said in a statement. “We are facing war against clean energy from Washington Republicans, including our New York delegation, which is why we have adopted an all-of-the-above approach that includes a continued commitment to renewables and nuclear power to ensure grid reliability and affordability.”
Mamdani stayed mostly mum on climate and energy policy during the campaign, as Heatmap’s Robinson Meyer wrote, though he did propose putting solar panels on school roofs and came out against the pipeline. While Mamdani seems unlikely to back the pipeline Hochul and President Donald Trump have championed, during a mayoral debate he expressed support for the governor’s plan to build a new nuclear plant upstate.
Late last week, Pine Gate Renewables became the largest clean energy developer yet to declare bankruptcy since Trump and Congress overhauled federal policy to quickly phase out tax credits for wind and solar projects. In its Chapter 11 filings, the North Carolina-based company blamed provisions in Trump’s One Big Beautiful Bill Act that put strict limits on the use of equipment from “foreign entities of concern,” such as China. “During the [Inflation Reduction Act] days, pretty much anyone was willing to lend capital against anyone building projects,” Pol Lezcano, director of energy and renewables at the real estate services and investment firm CBRE, told the Financial Times. “That results in developer pipelines that may or may not be realistic.”
Sign up to receive Heatmap AM in your inbox every morning:
The Southwest Power Pool’s board of directors approved an $8.6 billion slate of 50 transmission projects across the grid system’s 14 states. The improvements are set to help the grid meet what it expects to be doubled demand in the next 10 years. The investments are meant to harden the “backbone” of the grid, which the operator said “is at capacity and forecasted load growth will only exacerbate the existing strain,” Utility Dive reported. The grid operator also warned that “simply adding new generation will not resolve the challenges.”
Oil giant Shell and the industrial behemoth Mitsubishi agreed to provide up to $17 million to a startup that plans to build a pilot plant capable of pulling both carbon dioxide and water from the atmosphere. The funding would cover the direct air capture startup Avnos’ Project Cedar. The project could remove 3,000 metric tons of carbon from the atmosphere every year, along with 6,000 tons of clean freshwater. “What you’re seeing in Shell and Mitsubishi investing here is the opportunity to grow with us, to sort of come on this commercialization journey with us, to ultimately get to a place where we’re offering highly cost competitive CO2 removal credits in the market,” Will Kain, CEO of Avnos, told E&E News.
The private capital helps make up for some of the federal funding the Trump administration is expected to cut as part of broad slashes to climate-tech investments. But as Heatmap’s Emily Pontecorvo reported last month from north of the border, Canada is developing into a hot zone of DAC development.
The future of remote sensing will belong to China. At least, that’s what the research suggests. This broad category involves the use of technologies such as lasers, imagery, and hyperspectral imagery, and is key to everything from autonomous driving to climate monitoring. At least 47% of studies in peer-reviewed publications on remote sensing now originate in China, while just 9% come from the United States, according to the New York University paper. That research clout is turning into an economic advantage. China now accounts for the majority of remote sensing patents filed worldwide. “This represents one of the most significant shifts in global technological leadership in recent history,” Debra Laefer, a professor in the NYU Tandon Civil and Urban Engineering program and the lead author, said in a statement.
The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.
In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.
Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.
“Obviously some Trump administration policies have weakened the business case for renewables and therefore also storage,” Eugene Beh, Quino’s founder and CEO, told me when I asked what it was like to fundraise in this environment. “But it’s actually outside the U.S., where the appetite still remains very strong.”
The deployment of battery energy storage in India lags far behind the pace of renewables adoption, presenting both a challenge and an opportunity for the sector. “India does have an opportunity to leapfrog into a more flexible, resilient, and sustainable power system,” Shreyas Shende, a senior research associate at Johns Hopkins’ Net Zero Industrial Policy Lab, told me. The government appears eager to make it happen, setting ambitious targets and offering ample incentives for tech-neutral battery storage deployments, as it looks to lean into novel technologies.
“Indian policymakers have been trying to double down on the R&D and innovation landscape because they’re trying to figure out, how do you reduce dependence on these lithium ion batteries?” Shende said. China dominates the global lithium-ion market, and also has a fractious geopolitical relationship with India, So much like the U.S., India is eager to reduce its dependence on Chinese imports. “Anything that helps you move away from that would only be welcome as long as there’s cost compatibility,” he added
Beh told me that India also presents a natural market for Quino’s expansion, in large part because the key raw material for its proprietary electrolyte chemistry — a clothing dye derived from coal tar — is primarily produced in China and India. But with tariffs and other trade barriers, China poses a much more challenging environment to work in or sell from these days, making the Indian market a simpler choice.
Quino’s dye-based electrolyte is designed to be significantly cheaper than the industry standard, which relies on the element vanadium dissolved in an acidic solution. In vanadium flow batteries, the electrolyte alone can account for roughly 70% of the product’s total cost, Beh said. “We’re using exactly the same hardware as what the vanadium flow battery manufacturers are doing,” he told me minus the most expensive part. “Instead, we use our organic electrolyte in place of vanadium, which will be about one quarter of the cost.”
Like many other companies these days, Beh views data centers as a key market for Quino’s tech — not just because that’s where the money’s at, but also due to one of flow batteries’ core advantages: their extremely long cycle lives. While lithium-ion energy storage systems can only complete from 3,000 to 5,000 cycles before losing 20% or more of their capacity, with flow batteries, the number of cycles doesn’t correlate with longevity at all. That’s because their liquid-based chemistry allows them to charge and discharge without physically stressing the electrodes.
That’s a key advantage for AI data centers, which tend to have spiky usage patterns determined by the time of day and events that trigger surges in web traffic. Many baseload power sources can’t ramp quickly enough to meet spikes in demand, and gas peaker plants are expensive. That makes batteries a great option — especially those that can respond to fluctuations by cycling multiple times per day without degrading their performance.
The company hasn’t announced any partnerships with data center operators to date — though hyperscalers are certainly investing in the Indian market. First up will be getting the company’s demonstration plants online in both California and India. Quino already operates a 100-kilowatt-hour pilot facility near Buffalo, New York, and was awarded a $10 million grant from the California Energy Commission and a $5 million grant from the Department of Energy this year to deploy a larger, 5-megawatt-hour battery at a regional health care center in Southern California. Beh expects that to be operational by the end of 2027.
But its plans in India are both more ambitious and nearer-term. In partnership with Atri, the company plans to build a 150- to 200-megawatt-hour electrolyte production facility, which Beh says should come online next year. With less government funding in the mix, there’s simply less bureaucracy to navigate, he explained. Further streamlining the process is the fact that Atri owns the site where the plant will be built. “Obviously if you have a motivated site owner who’s also an investor in you, then things will go a lot faster,” Beh told me.
The goal for this facility is to enable production of a battery that’s cost-competitive with vanadium flow batteries. “That ought to enable us to enter into a virtuous cycle, where we make something cheaper than vanadium, people doing vanadium will switch to us, that drives more demand, and the cost goes down further,” Beh told me. Then, once the company scales to roughly a gigawatt-hour of annual production, he expects it will be able to offer batteries with a capital cost roughly 30% lower than lithium-ion energy storage systems.
If it achieves that target, in theory at least, the Indian market will be ready. A recent analysis estimates that the country will need 61 gigawatts of energy storage capacity by 2030 to support its goal of 500 gigawatts of clean power, rising to 97 gigawatts by 2032. “If battery prices don’t fall, I think the focus will be towards pumped hydro,” Shende told me. That’s where the vast majority of India’s energy storage comes from today. “But in case they do fall, I think battery storage will lead the way.”
The hope is that by the time Quino is producing at scale overseas, demand and investor interest will be strong enough to support a large domestic manufacturing plant as well. “In the U.S., it feels like a lot of investment attention just turned to AI,” Beh told me, explaining that investors are taking a “wait and see” approach to energy infrastructure such as Quino. But he doesn’t see that lasting. “I think this mega-trend of how we generate and use electricity is just not going away.”