You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why one of our best tools to fight climate change suffers on a hotter planet.
If the world is going to slash greenhouse emissions from transportation, then we need a vast number of drivers to switch from fossil fuel engines to electric cars powered by renewable energy. Yet the EVs we need to mitigate further climate damage might, in one way, be ill-suited to the warmer and more extreme climate we’ve already created.
You may have heard that frigid temps are no friend of the electric vehicle. That is true, since extreme cold is a two-pronged problem. First, physical processes in the battery happen more slowly if it’s chilly out. When the mercury drops, my Tesla Model 3 displays a little snowflake icon to warn me the battery unit is too cold to actually use all the range that should be in there. The second problem is maintaining a comfortable cabin. The battery expends a lot of energy generating enough heat to keep the interior warm for its occupants when the temperatures fall to freezing or below.
When it comes to hot days, that second problem is the big one. The agency Recurrent completed a study this month that demonstrated just how much range is lost on sweltering days like those of this month’s nationwide heat wave.
As long as the afternoon high temperature doesn’t get too high, an EV’s range loss is manageable. With an outside temp of 80 degrees Fahrenheit, they found the car loses only 2.8% of its range to keep the cabin at 70 degrees. Even at 90 degrees, the loss reaches just 5%. That amounts to just 10 miles lost from a 200-mile EV. You might not even notice it — it’s probably not that far off from what’s lost by driving 80 miles per hour down the freeway instead of the posted speed limit of 65.
When it’s dangerously hot out, though, the story changes quickly. At 95 degrees outside, the average EV loses 15% of its potential range. At 100 degrees outside, the car suffers a staggering 31% range loss to maintain 70 degrees inside the car. The bigger the difference between the outside temperature and the desired inside temperature, the more of your juice is lost to climate control rather than moving the vehicle. This is why range loss is typically worse in winter — a 10-degree day in Duluth means you’re 60 degrees away from the desired 70 Fahrenheit, while a 110-degree day in Phoenix is “only” 40 degrees from the target.
I’ve seen this phenomenon first-hand during scorching trips across the desert from Los Angeles to Las Vegas or up the interstate toward the San Francisco Bay Area, where the drive passed through areas that exceeded 110 degrees. The car offers an estimate for how much will be left on the battery upon arrival at the next charging stop — then that estimate slowly dips lower and lower as more energy is expended just on air conditioning. After a few anxious drives, I learned to hoard a bit more charge than the car thinks it needs to make it comfortably to the next station.
There is also the possibility that lots of high-temperature driving will cause long-term damage to the battery’s electrolyte or other components. There isn’t too much to do about this one other than limiting how often you drive on extreme days, if you can, and hope that future battery materials that are more resistant to heat become a reality sooner rather than later.
However, there are ways to mitigate the EV heat problem during your drive time. It takes more energy to air-condition the cabin down to the proper temperature than it does to maintain the temperature. So, if you’re plugged in to charge at home or at a public charger, have your vehicle reach the desired temp before you unplug and leave.
Also, the figures in Recurrent’s study are based on setting the climate control to 70 degrees. If you and your passengers can cope with a higher cabin temperature, say 75 degrees, then you’re shortening the difference by 5 degrees and giving your battery a break. (Plenty of EV adopters have gone through a moment of panic where they thought they might need to turn off the climate control entirely to ensure they reached their next plug-in.)
Should the planet’s new normal of extreme heat deter you from going electric? First, remember the manta that experts repeat as a rebuttal to range anxiety: Most people do the vast majority of their driving close to home. Running the A/C on max to survive an August trip to Trader Joe’s isn’t going to make your EV battery hit zero unless you were too low to begin with.
If you’re really worried about the extreme temperatures of your home region, then splurge for range. I’ve recommended this before regardless of where you live and drive. But if you live in the middle of the desert and can afford the longer-range version of a particular EV, then buy it and save yourself the mental strain of wondering whether the summer sun will limit how far you can really drive your car.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A conversation with VDE Americas CEO Brian Grenko.
This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.
The following conversation has been lightly edited for clarity.
Hiya Brian. So why’d you get into the hail issue?
Obviously solar panels are made with glass that can allow the sunlight to come through. People have to remember that when you install a project, you’re financing it for 35 to 40 years. While the odds of you getting significant hail in California or Arizona are low, it happens a lot throughout the country. And if you think about some of these large projects, they may be in the middle of nowhere, but they are taking hundreds if not thousands of acres of land in some cases. So the chances of them encountering large hail over that lifespan is pretty significant.
We partnered with one of the country’s foremost experts on hail and developed a really interesting technology that can digest radar data and tell folks if they’re developing a project what the [likelihood] will be if there’s significant hail.
Solar panels can withstand one-inch hail – a golfball size – but once you get over two inches, that’s when hail starts breaking solar panels. So it’s important to understand, first and foremost, if you’re developing a project, you need to know the frequency of those events. Once you know that, you need to start thinking about how to design a system to mitigate that risk.
The government agencies that look over land use, how do they handle this particular issue? Are there regulations in place to deal with hail risk?
The regulatory aspects still to consider are about land use. There are authorities with jurisdiction at the federal, state, and local level. Usually, it starts with the local level and with a use permit – a conditional use permit. The developer goes in front of the township or the city or the county, whoever has jurisdiction of wherever the property is going to go. That’s where it gets political.
To answer your question about hail, I don’t know if any of the [authority having jurisdictions] really care about hail. There are folks out there that don’t like solar because it’s an eyesore. I respect that – I don’t agree with that, per se, but I understand and appreciate it. There’s folks with an agenda that just don’t want solar.
So okay, how can developers approach hail risk in a way that makes communities more comfortable?
The bad news is that solar panels use a lot of glass. They take up a lot of land. If you have hail dropping from the sky, that’s a risk.
The good news is that you can design a system to be resilient to that. Even in places like Texas, where you get large hail, preparing can mean the difference between a project that is destroyed and a project that isn’t. We did a case study about a project in the East Texas area called Fighting Jays that had catastrophic damage. We’re very familiar with the area, we work with a lot of clients, and we found three other projects within a five-mile radius that all had minimal damage. That simple decision [to be ready for when storms hit] can make the complete difference.
And more of the week’s big fights around renewable energy.
1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.
2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.
3. Garrett County, Maryland – Fight readers tell me they’d like to hear a piece of good news for once, so here’s this: A 300-megawatt solar project proposed by REV Solar in rural Maryland appears to be moving forward without a hitch.
4. Stark County, Ohio – The Ohio Public Siting Board rejected Samsung C&T’s Stark Solar project, citing “consistent opposition to the project from each of the local government entities and their impacted constituents.”
5. Ingham County, Michigan – GOP lawmakers in the Michigan State Capitol are advancing legislation to undo the state’s permitting primacy law, which allows developers to evade municipalities that deny projects on unreasonable grounds. It’s unlikely the legislation will become law.
6. Churchill County, Nevada – Commissioners have upheld the special use permit for the Redwood Materials battery storage project we told you about last week.
Long Islanders, meanwhile, are showing up in support of offshore wind, and more in this week’s edition of The Fight.
Local renewables restrictions are on the rise in the Hawkeye State – and it might have something to do with carbon pipelines.
Iowa’s known as a renewables growth area, producing more wind energy than any other state and offering ample acreage for utility-scale solar development. This has happened despite the fact that Iowa, like Ohio, is home to many large agricultural facilities – a trait that has often fomented conflict over specific projects. Iowa has defied this logic in part because the state was very early to renewables, enacting a state portfolio standard in 1983, signed into law by a Republican governor.
But something else is now on the rise: Counties are passing anti-renewables moratoria and ordinances restricting solar and wind energy development. We analyzed Heatmap Pro data on local laws and found a rise in local restrictions starting in 2021, leading to nearly 20 of the state’s 99 counties – about one fifth – having some form of restrictive ordinance on solar, wind or battery storage.
What is sparking this hostility? Some of it might be counties following the partisan trend, as renewable energy has struggled in hyper-conservative spots in the U.S. But it may also have to do with an outsized focus on land use rights and energy development that emerged from the conflict over carbon pipelines, which has intensified opposition to any usage of eminent domain for energy development.
The central node of this tension is the Summit Carbon Solutions CO2 pipeline. As we explained in a previous edition of The Fight, the carbon transportation network would cross five states, and has galvanized rural opposition against it. Last November, I predicted the Summit pipeline would have an easier time under Trump because of his circle’s support for oil and gas, as well as the placement of former North Dakota Governor Doug Burgum as interior secretary, as Burgum was a major Summit supporter.
Admittedly, this prediction has turned out to be incorrect – but it had nothing to do with Trump. Instead, Summit is now stalled because grassroots opposition to the pipeline quickly mobilized to pressure regulators in states the pipeline is proposed to traverse. They’re aiming to deny the company permits and lobbying state legislatures to pass bills banning the use of eminent domain for carbon pipelines. One of those states is South Dakota, where the governor last month signed an eminent domain ban for CO2 pipelines. On Thursday, South Dakota regulators denied key permits for the pipeline for the third time in a row.
Another place where the Summit opposition is working furiously: Iowa, where opposition to the CO2 pipeline network is so intense that it became an issue in the 2020 presidential primary. Regulators in the state have been more willing to greenlight permits for the project, but grassroots activists have pressured many counties into some form of opposition.
The same counties with CO2 pipeline moratoria have enacted bans or land use restrictions on developing various forms of renewables, too. Like Kossuth County, which passed a resolution decrying the use of eminent domain to construct the Summit pipeline – and then three months later enacted a moratorium on utility-scale solar.
I asked Jessica Manzour, a conservation program associate with Sierra Club fighting the Summit pipeline, about this phenomenon earlier this week. She told me that some counties are opposing CO2 pipelines and then suddenly tacking on or pivoting to renewables next. In other cases, counties with a burgeoning opposition to renewables take up the pipeline cause, too. In either case, this general frustration with energy companies developing large plots of land is kicking up dust in places that previously may have had a much lower opposition risk.
“We painted a roadmap with this Summit fight,” said Jess Manzour, a campaigner with Sierra Club involved in organizing opposition to the pipeline at the grassroots level, who said zealous anti-renewables activists and officials are in some cases lumping these items together under a broad umbrella. ”I don’t know if it’s the people pushing for these ordinances, rather than people taking advantage of the situation.”