Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Electric Cars’ Heat Problem

Why one of our best tools to fight climate change suffers on a hotter planet.

An Ioniq and heat.
Heatmap Illustration/Getty Images, Hyundai

If the world is going to slash greenhouse emissions from transportation, then we need a vast number of drivers to switch from fossil fuel engines to electric cars powered by renewable energy. Yet the EVs we need to mitigate further climate damage might, in one way, be ill-suited to the warmer and more extreme climate we’ve already created.

You may have heard that frigid temps are no friend of the electric vehicle. That is true, since extreme cold is a two-pronged problem. First, physical processes in the battery happen more slowly if it’s chilly out. When the mercury drops, my Tesla Model 3 displays a little snowflake icon to warn me the battery unit is too cold to actually use all the range that should be in there. The second problem is maintaining a comfortable cabin. The battery expends a lot of energy generating enough heat to keep the interior warm for its occupants when the temperatures fall to freezing or below.

When it comes to hot days, that second problem is the big one. The agency Recurrent completed a study this month that demonstrated just how much range is lost on sweltering days like those of this month’s nationwide heat wave.

As long as the afternoon high temperature doesn’t get too high, an EV’s range loss is manageable. With an outside temp of 80 degrees Fahrenheit, they found the car loses only 2.8% of its range to keep the cabin at 70 degrees. Even at 90 degrees, the loss reaches just 5%. That amounts to just 10 miles lost from a 200-mile EV. You might not even notice it — it’s probably not that far off from what’s lost by driving 80 miles per hour down the freeway instead of the posted speed limit of 65.

When it’s dangerously hot out, though, the story changes quickly. At 95 degrees outside, the average EV loses 15% of its potential range. At 100 degrees outside, the car suffers a staggering 31% range loss to maintain 70 degrees inside the car. The bigger the difference between the outside temperature and the desired inside temperature, the more of your juice is lost to climate control rather than moving the vehicle. This is why range loss is typically worse in winter — a 10-degree day in Duluth means you’re 60 degrees away from the desired 70 Fahrenheit, while a 110-degree day in Phoenix is “only” 40 degrees from the target.

I’ve seen this phenomenon first-hand during scorching trips across the desert from Los Angeles to Las Vegas or up the interstate toward the San Francisco Bay Area, where the drive passed through areas that exceeded 110 degrees. The car offers an estimate for how much will be left on the battery upon arrival at the next charging stop — then that estimate slowly dips lower and lower as more energy is expended just on air conditioning. After a few anxious drives, I learned to hoard a bit more charge than the car thinks it needs to make it comfortably to the next station.

There is also the possibility that lots of high-temperature driving will cause long-term damage to the battery’s electrolyte or other components. There isn’t too much to do about this one other than limiting how often you drive on extreme days, if you can, and hope that future battery materials that are more resistant to heat become a reality sooner rather than later.

However, there are ways to mitigate the EV heat problem during your drive time. It takes more energy to air-condition the cabin down to the proper temperature than it does to maintain the temperature. So, if you’re plugged in to charge at home or at a public charger, have your vehicle reach the desired temp before you unplug and leave.

Also, the figures in Recurrent’s study are based on setting the climate control to 70 degrees. If you and your passengers can cope with a higher cabin temperature, say 75 degrees, then you’re shortening the difference by 5 degrees and giving your battery a break. (Plenty of EV adopters have gone through a moment of panic where they thought they might need to turn off the climate control entirely to ensure they reached their next plug-in.)

Should the planet’s new normal of extreme heat deter you from going electric? First, remember the manta that experts repeat as a rebuttal to range anxiety: Most people do the vast majority of their driving close to home. Running the A/C on max to survive an August trip to Trader Joe’s isn’t going to make your EV battery hit zero unless you were too low to begin with.

If you’re really worried about the extreme temperatures of your home region, then splurge for range. I’ve recommended this before regardless of where you live and drive. But if you live in the middle of the desert and can afford the longer-range version of a particular EV, then buy it and save yourself the mental strain of wondering whether the summer sun will limit how far you can really drive your car.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Sparks

Trump’s Offshore Wind Ban Is Coming, Congressman Says

Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.

A very large elephant and a wind turbine.
Heatmap Illustration/Getty Images

President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.

“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”

Keep reading...Show less
Climate

An Unexpected Obstacle to Putting Out the L.A. Fires

That sick drone shot is not worth it.

A drone operator and flames.
Heatmap Illustration/Getty Images

Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.

You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.

Keep reading...Show less
Climate

What Started the Fires in Los Angeles?

Plus 3 more outstanding questions about this ongoing emergency.

Los Angeles.
Heatmap Illustration/Getty Images

As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?

Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.

Keep reading...Show less
Green