Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Electric Cars’ Heat Problem

Why one of our best tools to fight climate change suffers on a hotter planet.

An Ioniq and heat.
Heatmap Illustration/Getty Images, Hyundai

If the world is going to slash greenhouse emissions from transportation, then we need a vast number of drivers to switch from fossil fuel engines to electric cars powered by renewable energy. Yet the EVs we need to mitigate further climate damage might, in one way, be ill-suited to the warmer and more extreme climate we’ve already created.

You may have heard that frigid temps are no friend of the electric vehicle. That is true, since extreme cold is a two-pronged problem. First, physical processes in the battery happen more slowly if it’s chilly out. When the mercury drops, my Tesla Model 3 displays a little snowflake icon to warn me the battery unit is too cold to actually use all the range that should be in there. The second problem is maintaining a comfortable cabin. The battery expends a lot of energy generating enough heat to keep the interior warm for its occupants when the temperatures fall to freezing or below.

When it comes to hot days, that second problem is the big one. The agency Recurrent completed a study this month that demonstrated just how much range is lost on sweltering days like those of this month’s nationwide heat wave.

As long as the afternoon high temperature doesn’t get too high, an EV’s range loss is manageable. With an outside temp of 80 degrees Fahrenheit, they found the car loses only 2.8% of its range to keep the cabin at 70 degrees. Even at 90 degrees, the loss reaches just 5%. That amounts to just 10 miles lost from a 200-mile EV. You might not even notice it — it’s probably not that far off from what’s lost by driving 80 miles per hour down the freeway instead of the posted speed limit of 65.

When it’s dangerously hot out, though, the story changes quickly. At 95 degrees outside, the average EV loses 15% of its potential range. At 100 degrees outside, the car suffers a staggering 31% range loss to maintain 70 degrees inside the car. The bigger the difference between the outside temperature and the desired inside temperature, the more of your juice is lost to climate control rather than moving the vehicle. This is why range loss is typically worse in winter — a 10-degree day in Duluth means you’re 60 degrees away from the desired 70 Fahrenheit, while a 110-degree day in Phoenix is “only” 40 degrees from the target.

I’ve seen this phenomenon first-hand during scorching trips across the desert from Los Angeles to Las Vegas or up the interstate toward the San Francisco Bay Area, where the drive passed through areas that exceeded 110 degrees. The car offers an estimate for how much will be left on the battery upon arrival at the next charging stop — then that estimate slowly dips lower and lower as more energy is expended just on air conditioning. After a few anxious drives, I learned to hoard a bit more charge than the car thinks it needs to make it comfortably to the next station.

There is also the possibility that lots of high-temperature driving will cause long-term damage to the battery’s electrolyte or other components. There isn’t too much to do about this one other than limiting how often you drive on extreme days, if you can, and hope that future battery materials that are more resistant to heat become a reality sooner rather than later.

However, there are ways to mitigate the EV heat problem during your drive time. It takes more energy to air-condition the cabin down to the proper temperature than it does to maintain the temperature. So, if you’re plugged in to charge at home or at a public charger, have your vehicle reach the desired temp before you unplug and leave.

Also, the figures in Recurrent’s study are based on setting the climate control to 70 degrees. If you and your passengers can cope with a higher cabin temperature, say 75 degrees, then you’re shortening the difference by 5 degrees and giving your battery a break. (Plenty of EV adopters have gone through a moment of panic where they thought they might need to turn off the climate control entirely to ensure they reached their next plug-in.)

Should the planet’s new normal of extreme heat deter you from going electric? First, remember the manta that experts repeat as a rebuttal to range anxiety: Most people do the vast majority of their driving close to home. Running the A/C on max to survive an August trip to Trader Joe’s isn’t going to make your EV battery hit zero unless you were too low to begin with.

If you’re really worried about the extreme temperatures of your home region, then splurge for range. I’ve recommended this before regardless of where you live and drive. But if you live in the middle of the desert and can afford the longer-range version of a particular EV, then buy it and save yourself the mental strain of wondering whether the summer sun will limit how far you can really drive your car.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

The Rare Earth Shopping Spree

On aluminum smelting, Korean nuclear, and a geoengineering database

Mining.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern may have caused up to $115 billion in economic losses and triggered the longest stretch of subzero temperatures in New York City’s history • Temperatures across the American South plunged up to 30 degrees Fahrenheit below historical averages • South Africa’s Northern Cape is roasting in temperatures as high as 104 degrees.


Keep reading...Show less
Green
Energy

The Grid Survived The Storm. Now Comes The Cold.

With historic lows projected for the next two weeks — and more snow potentially on the way — the big strain may be yet to come.

Storm effects.
Heatmap Illustration/Getty Images

Winter Storm Fern made the final stand of its 2,300-mile arc across the United States on Monday as it finished dumping 17 inches of “light, fluffy” snow over parts of Maine. In its wake, the storm has left hundreds of thousands without power, killed more than a dozen people, and driven temperatures to historic lows.

The grid largely held up over the weekend, but the bigger challenge may still be to come. That’s because prolonged low temperatures are forecasted across much of the country this week and next, piling strain onto heating and electricity systems already operating at or close to their limits.

Keep reading...Show less
Blue
AM Briefing

White Out

On deep-sea mining, New York nuclear, and kestrel symbiosis

Icy power lines.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern buried broad swaths of the country, from Oklahoma City to Boston • Intense flooding in Zimbabwe and Mozambique have killed more than 100 people • South Australia’s heat wave is raging on, raising temperatures as high as 113 degrees Fahrenheit.


THE TOP FIVE

1. America’s big snow storm buckles the grid, leaving 1 million without power

The United States’ aging grid infrastructure faces a test every time the weather intensifies, whether that’s heat domes, hurricanes, or snow storms. The good news is that pipeline winterization efforts that followed the deadly blackouts in 2021’s Winter Storm Uri made some progress in keeping everything running in the cold. The bad news is that nearly a million American households still lost power amid the storm. Tennessee, Mississippi, and Louisiana were the worst hit, with hundreds of thousands of households left in the dark, according to live data on the Power Outage tracker website. Georgia and Texas followed close behind, with roughly 75,000 customers facing blackouts. Kentucky had the next-most outages, with more than 50,000 households disconnected from the grid, followed by South Carolina, West Virginia, North Carolina, Virginia, and Alabama. Given the prevalence of electric heating in the typically-warmer Southeast, the outages risked leaving the blackout region without heat. Gas wasn’t entirely reliable, however. The deep freeze in Texas halted operations at roughly 10% of the Gulf Coast’s petrochemical facilities and refineries, Bloomberg reported.

Keep reading...Show less
Blue