You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
It’s flawed, but not worthless. Here’s how you should think about it.

Starting this month, the tens of millions of Americans who browse the real-estate listings website Zillow will encounter a new type of information.
In addition to disclosing a home’s square footage, school district, and walkability score, Zillow will begin to tell users about its climate risk — the chance that a major weather or climate event will strike in the next 30 years. It will focus on the risk from five types of dangers: floods, wildfires, high winds, heat, and air quality.
The data has the potential to transform how Americans think about buying a home, especially because climate change will likely worsen many of those dangers. About 70% of Americans look at Zillow at some point during the process of buying a home, according to the company.
“Climate risks are now a critical factor in home-buying decisions,” Skylar Olsen, Zillow’s chief economist, said in a statement. “Healthy markets are ones where buyers and sellers have access to all relevant data for their decisions.”
That’s true — if the information is accurate. But can homebuyers actually trust Zillow’s climate risk data? When climate experts have looked closely at the underlying data Zillow uses to assess climate risk, they have walked away unconvinced.
Zillow’s climate risk data comes from First Street Technology, a New York-based company that uses computer models to estimate the risk that weather and climate change pose to homes and buildings. It is far and away the most prominent company focused on modeling the physical risks of climate change. (Although it was initially established as a nonprofit foundation, First Street reorganized as a for-profit company and accepted $46 million in investment earlier this year.)
But few experts believe that tools like First Street’s are capable of actually modeling the dangers of climate change at a property-by-property level. A report from a team of White House scientific advisors concluded last year that these models are of “questionable quality,” and a Bloomberg investigation found that different climate risk models could return wildly different catastrophe estimates for the same property.

Not all of First Street’s data is seen as equally suspect. Its estimates of heat and air pollution risk have generally attracted less criticism from experts. But its estimates of flooding and wildfire risk — which are the most catastrophic events for homeowners — are generally thought to be inadequate at best.
So while Zillow will soon tell you with seeming precision that a certain home has a 1.1% chance of facing a wildfire in the next 30 years, potential homebuyers should take that kind of estimate with “a lot of grains of salt,” Michael Wara, a senior research scholar at the Stanford Woods Institute for the Environment, told me.
Here’s a short guide for how to think through Zillow’s estimates of climate risk.
Neither First Street nor Zillow immediately responded to requests for comment.
Zillow has said that, when the data is available, it will tell users whether a given home has flooded or burned in a wildfire recently. (It will also say whether a home is near a source of air pollution.)
Homebuyers should take that information seriously, Madison Condon, a Boston University School of Law professor who studies climate change and financial markets, told me.
“If the house flooded in the recent past, then that should be a major red flag to you,” she said. Houses that have flooded recently are very likely to flood again, she said. Only 10 states require a home seller to disclose a flood to a potential buyer.
First Street claims that its physics-based models can identify the risk that any individual property will flood. But the ability to determine whether a given house will flood depends on having an intricate knowledge of local infrastructure, including stormwater drains and what exists on other properties, and that data does not seem to exist in anyone’s model at the moment, Condon said.
When Bloomberg compared the output of three different flooding models, including First Street’s, they agreed on results for only 5% of properties.
If you’re worried about a home’s flood risk, then contact the local government and see if you can look at a flood map or even talk to a flood manager, Condon said. Many towns and cities keep flood maps in their records or on their website that are more granular than what First Street is capable of, she said.
“The local flood manager who has walked the property will almost always have a better grasp of flood risk than the big, top-down national model,” she said.
In some cases, Zillow will recommend that a home buyer purchase federal flood insurance. That’s generally not a bad idea, Condon said, even if Zillow reaches that conclusion using national model data that has errors or mistakes.
“It simply is true that way more people should be buying flood insurance than generally think they should,” she said. “So a general overcorrection on that would be good.”
If you’re looking at buying a home in a wildfire-prone area, especially in the American West, then you should generally assume that Zillow is underestimating its wildfire risk, Wara, the Stanford researcher, told me.
That’s because computer models that estimate wildfire risk are in a fairly early stage of development and improving rapidly. Even the best academic simulations lack the kind of granular, structure-level data that would allow them to predict a property’s forward-looking wildfire risk.
That is actually a bigger problem for homebuyers than for insurance companies, he said. A home insurance company gets to decide whether to insure a property every year. If it looks at new science and concludes that a given town or structure is too risky, then it can raise its premiums or even simply decline to cover a property at all. (State Farm stopped selling home insurance policies in California last year, partly because of wildfire risk.)
But when homeowners buy a house, their lives and their wealth get locked into that property for 30 years. “Maybe your kids are going to the school district,” he said. It’s much harder to sell a home when you can’t get it covered. “You have an illiquid asset, and it’s a lot harder to move.”
That means First Street’s wildfire risk data should be taken as “absolute minimum estimate,” Wara said. In a wildfire-prone area, “the real risk is most likely much higher” than its models say.
Over the past several years, runaway wildland fires have killed dozens of people or destroyed tens of thousands of homes in Lahaina, Hawaii; Paradise, California; and Marshall, Colorado.
But in those cases, once the fire began incinerating homes, it ceased to be a wildland fire and became a structure-to-structure fire. The fire began to leap from house to house like a book of matches, condemning entire neighborhoods to burn within minutes.
Modern computer models do an especially poor job of simulating that transition — the moment when a wildland fire becomes an urban conflagration, Wara said. Although it only happens in perhaps 0.5% of the most intense fires, those fires are responsible for destroying the most homes.
But “how that happens and how to prevent that is not well understood yet,” he said. “And if they’re not well understood yet from a scientific perspective, that means it’s not in the [First Street] model.”
Nor do the best university wildfire models have good data on every individual property’s structural-level details — such as what material its walls or roof are made of — that would make it susceptible to fire.
When assessing whether your home faces wildfire risk, its structure is very important. But “you have to know what your neighbor’s houses look like, too, within about a 250-yard radius. So that’s your whole neighborhood,” Wara said. “I don’t think anyone has that data.”
A similar principle goes for thinking about flood risk, Condon said. Your home might not flood, she said, but it also matters whether the roads to your house are still driveable or whether the power lines fail. “It’s not particularly useful to have a flood-resilient home if your whole neighborhood gets washed out,” she said.
Experts agree that the most important interventions to discourage wildfire — or, for that matter, floods — have to happen at the community level. Although few communities are doing prescribed burns or fuel reduction programs right now, some are, Wara said.
But because nobody is collecting data about those programs, national risk models like First Street’s would not factor those programs into an area’s wildfire risk, he said. (In the rare case that a government is clearing fuel or doing a prescribed burn around a town, wildfire risk there might actually be lower than Zillow says, Wara added.)
Going forward, figuring out a property’s climate risk — much like pushing for community-level resilience investment — shouldn’t be left up to individuals, Condon said.
The state of California is investing in a public wildfire catastrophe model so that it can figure out which homes and towns face the highest risk. She said that Fannie Mae and Freddie Mac, the federal entities that buy home mortgages, could invest in their own internal climate-risk assessments to build the public’s capacity to understand climate risk.
“I would advocate for this not to be an every-man-for-himself, every-consumer-has-to-make-a-decision situation,” Condon said.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A third judge rejected a stop work order, allowing the Coastal Virginia offshore wind project to proceed.
Offshore wind developers are now three for three in legal battles against Trump’s stop work orders now that Dominion Energy has defeated the administration in federal court.
District Judge Jamar Walker issued a preliminary injunction Friday blocking the stop work order on Dominion’s Coastal Virginia offshore wind project after the energy company argued it was issued arbitrarily and without proper basis. Dominion received amicus briefs supporting its case from unlikely allies, including from representatives of PJM Interconnection and David Belote, a former top Pentagon official who oversaw a military clearinghouse for offshore wind approval. This comes after Trump’s Department of Justice lost similar cases challenging the stop work orders against Orsted’s Revolution Wind off the coast of New England and Equinor’s Empire Wind off New York’s shoreline.
As for what comes next in the offshore wind legal saga, I see three potential flashpoints:
It’s important to remember the stakes of these cases. Orsted and Equinor have both said that even a week or two more of delays on one of these projects could jeopardize their projects and lead to cancellation due to narrow timelines for specialized ships, and Dominion stated in the challenge to its stop work order that halting construction may cost the company billions.
It’s aware of the problem. That doesn’t make it easier to solve.
The data center backlash has metastasized into a full-blown PR crisis, one the tech sector is trying to get out in front of. But it is unclear whether companies are responding effectively enough to avoid a cascading series of local bans and restrictions nationwide.
Our numbers don’t lie: At least 25 data center projects were canceled last year, and nearly 100 projects faced at least some form of opposition, according to Heatmap Pro data. We’ve also recorded more than 60 towns, cities and counties that have enacted some form of moratorium or restrictive ordinance against data center development. We expect these numbers to rise throughout the year, and it won’t be long before the data on data center opposition is rivaling the figures on total wind or solar projects fought in the United States.
I spent this week reviewing the primary motivations for conflict in these numerous data center fights and speaking with representatives of the data center sector and relevant connected enterprises, like electrical manufacturing. I am now convinced that the industry knows it has a profound challenge on its hands. Folks are doing a lot to address it, from good-neighbor promises to lobbying efforts at the state and federal level. But much more work will need to be done to avoid repeating mistakes that have bedeviled other industries that face similar land use backlash cycles, such as fossil fuel extraction, mining, and renewable energy infrastructure development.
Two primary issues undergird the data center mega-backlash we’re seeing today: energy use fears and water consumption confusion.
Starting with energy, it’s important to say that data center development currently correlates with higher electricity rates in areas where projects are being built, but the industry challenges the presumption that it is solely responsible for that phenomenon. In the eyes of opponents, utilities are scrambling to construct new power supplies to meet projected increases in energy demand, and this in turn is sending bills higher.
That’s because, as I’ve previously explained, data centers are getting power in two ways: off the existing regional electric grid or from on-site generation, either from larger new facilities (like new gas plants or solar farms) or diesel generators for baseload, backup purposes. But building new power infrastructure on site takes time, and speed is the name of the game right now in the AI race, so many simply attach to the existing grid.
Areas with rising electricity bills are more likely to ban or restrict data center development. Let’s just take one example: Aurora, Illinois, a suburb of Chicago and the second most-populous city in the state. Aurora instituted a 180-day moratorium on data center development last fall after receiving numerous complaints about data centers from residents, including a litany related to electricity bills. More than 1.5 gigawatts of data center capacity already operate in the surrounding Kane County, where residential electricity rates are at a three-year high and expected to increase over the near term – contributing to a high risk of opposition against new projects.
The second trouble spot is water, which data centers need to cool down their servers. Project developers have face a huge hurdle in the form of viral stories of households near data centers who suddenly lack a drop to drink. Prominent examples activists bring up include this tale of a family living next to a Meta facility in Newton County, Georgia, and this narrative of people living around an Amazon Web Services center in St. Joseph County, Indiana. Unsurprisingly, the St. Joseph County Council rejected a new data center in response to, among other things, very vocal water concerns. (It’s worth noting that the actual harm caused to water systems by data centers is at times both over- and under-stated, depending on the facility and location.)
“I think it’s very important for the industry as a whole to be honest that living next to [a data center] is not an ideal situation,” said Caleb Max, CEO of the National Artificial Intelligence Association, a new D.C.-based trade group launched last year that represents Oracle and myriad AI companies.
Polling shows that data centers are less popular than the use of artificial intelligence overall, Max told me, so more needs to be done to communicate the benefits that come from their development – including empowering AI. “The best thing the industry could start to do is, for the people in these zip codes with the data centers, those people need to more tangibly feel the benefits of it.”
Many in the data center development space are responding quickly to these concerns. Companies are clearly trying to get out ahead on energy, with the biggest example arriving this week from Microsoft, which pledged to pay more for the electricity it uses to power its data centers. “It’s about balancing that demand and market with these concerns. That’s why you're seeing the industry lean in on these issues and more proactively communicating with communities,” said Dan Diorio, state policy director for the Data Center Coalition.
There’s also an effort underway to develop national guidance for data centers led by the National Electrical Manufacturers Association, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, and the Pacific Northwest National Laboratory, expected to surface publicly by this summer. Some of the guidance has already been published, such as this document on energy storage best practices, which is intended to help data centers know how to properly use solutions that can avoid diesel generators, an environmental concern in communities. But the guidance will ultimately include discussions of cooling, too, which can be a water-intensive practice.
“It’s a great example of an instance where industry is coming together and realizing there’s a need for guidance. There’s a very rapidly developing sector here that uses electricity in a fundamentally different way, that’s almost unprecedented,” Patrick Hughes, senior vice president of strategy, technical, and industry affairs for NEMA, told me in an interview Monday.
Personally, I’m unsure whether these voluntary efforts will be enough to assuage the concerns of local officials. It certainly isn’t convincing folks like Jon Green, a member of the Board of Supervisors in Johnson County, Iowa. Johnson County is a populous area, home to the University of Iowa campus, and Green told me that to date it hasn’t really gotten any interest from data center developers. But that didn’t stop the county from instituting a one-year moratorium in 2025 to block projects and give time for them to develop regulations.
I asked Green if there’s a form of responsible data center development. “I don’t know if there is, at least where they’re going to be economically feasible,” he told me. “If we say they’ve got to erect 40 wind turbines and 160 acres of solar in order to power a data center, I don’t know if when they do their cost analysis that it’ll pencil out.”
Plus a storage success near Springfield, Massachusetts, and more of the week’s biggest renewables fights.
1. Sacramento County, California – A large solar farm might go belly-up thanks to a fickle utility and fears of damage to old growth trees.
2. Hampden County, Massachusetts – The small Commonwealth city of Agawam, just outside of Springfield, is the latest site of a Massachusetts uproar over battery storage…
3. Washtenaw County, Michigan – The city of Saline southwest of Detroit is now banning data centers for at least a year – and also drafting regulations around renewable energy.
4. Dane County, Wisconsin – Another city with a fresh data center moratorium this week: Madison, home of the Wisconsin Badgers.
5. Hood County, Texas – Last but not least, I bring you one final stop on the apparent data center damnation tour: Hood County, south of the Texas city of Fort Worth.