You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The country’s underwhelming new climate pledge is more than just bad news for the world — it reveals a serious governing mistake.

Five years ago, China’s longtime leader Xi Jinping shocked and delighted the world by declaring in a video presentation to the United Nations that his country would peak its carbon emissions this decade and achieve carbon neutrality by 2060. He tried to rekindle that magic late last month in another virtual address to the UN, announcing China’s updated pledge under the Paris Agreement.
This time, the reaction was far more tepid. Given the disastrous state of American climate policy under President Donald Trump, some observers declared — as the longtime expert Li Shuo did in The New York Times — that China is “the adult in the room on climate now.” Most others were disappointed, arguing that China had merely “played it safe” and pointing out the new pledge “falls well short” of what’s needed to hit the Paris Agreement’s targets.
Yet China’s dithering is more than just an environmental failure — it is a governing mistake. China’s weak climate pledge isn’t just bad news for the world; it shows an indecisive leadership that is undermining its country’s own competitiveness by sticking with dirty coal rather than transitioning rapidly to a cleaner future.
The new pledge — known in UN jargon as a nationally determined contribution, or NDC — reveals a disconnect between the government’s official position and the optimistic discourse that now surrounds China’s clean energy sector. China today is described as the world’s first electrostate; it stands at the vanguard of the solar and EV revolution, some say, ready to remake the world order against a coalition of petrostate dinosaurs.
The NDC makes it obvious that the Chinese government does not yet view itself in such a fashion. China might look like an adult, but it more closely resembles a gangly teenager who is still getting used to their body after a growth spurt. As the analyst Kingsmill Bond recently put it on Heatmap’s podcast Shift Key, Chinese clean tech manufacturers have unlocked a cleaner and cheaper path to economic development. It isn’t yet clear that China is brave enough to commit to it. If China is the adult in the room, in other words, we’re screwed.
Let’s start by giving credit where due. For a country that had never offered an absolute emissions reduction target before, Xi’s promise — to cut emissions by 7% to 10% by 2035 — is a kind of progress. But observers expected China to go much further. Researchers at the University of Maryland and the Center for Research on Clean Air, for example, each suggested that emissions could decline by roughly 30% by that year. Only a reduction of this magnitude would actually keep the planet on a trajectory sufficiently close to the Paris Agreement’s goal to limit warming to 2 degrees Celsius.
Many inside China’s policy apparatus considered such ambitious cuts to be infeasible; for instance, Teng Fei, deputy director of Tsinghua University’s Institute of Energy, Environment and Economy, described a 30% reduction as “extreme.” Conversations with knowledgeable insiders, however, suggested a headline reduction of up to 15% was viewed as plausible. In that light, the decision to commit a mere 7% to 10% can only be seen as disappointing.
The NDC obviously represents a floor and not a ceiling, and China has historically only made climate promises that it knows it will keep. But even then, China’s leadership has given itself tremendous wiggle room. This can be seen in part by what is not in Xi’s pledge: any firm commitment about when, exactly, China’s emissions will peak. (His previous pledge only said that it would happen in the 2020s.) While it’s quite possible that 2024 or 2025 will end up being the peak, as some expect, the new pledge creates a perverse incentive to delay and pollute more now. The speech also contained little on non-CO2 greenhouse gases such as methane and nitrous oxide — which, given China’s previous commitment to reach net zero on all warming gases by 2060, seems like a significant blind spot.
Other commitments are only impressive until you scratch the surface. Xi pledged that China would install 3,600 gigawatts of solar and wind capacity by 2035. That may sound daunting: The United States, the world’s No. 2 country for renewables capacity, has a combined 400 gigawatts of solar and wind. But China already has about 1,600 gigawatts installed. So China’s promise, in essence, is to add around 200 gigawatts of solar and wind each year until 2035 — and while that would be a huge number for any other country, it actually represents a significant slowdown for China. The country added 360 gigawatts of wind and solar combined last year, and has already installed more than 200 gigawatts of solar alone in the first eight months of this one. In this light, China’s renewables pledge seems ominous.
More distressingly for climate action, it is unclear if this comparatively slower pace of clean electricity addition will actually allow China’s electricity sector to decarbonize. As the electricity analyst David Fishman has noted, China’s overall electricity demand grew faster than its clean electricity generation last year, leaving a roughly 100 terawatt-hour gap — despite all that new solar and wind (and despite 16 gigawatts of new nuclear and hydroelectric power plants, too). Coal filled this gap. Last year, China began construction of almost 100 gigawatts of new coal plants even though its existing coal fleet already operates less than half of the time. These new plants represented more than 90% of the world’s new coal capacity in 2024.
China’s climate strategy — like every other country’s — requires electrifying large swaths of its economy. If new renewables diminish to only 200 gigawatts a year, then it seems implausible that its renewable additions could meet demand growth — let alone eat away substantial amounts of coal-fired generation — unless its economic growth significantly slows.
Yet the news gets worse. Taken alone, the NDC’s weakness may speak of mere caution on China’s part, yet a number of policy changes to China’s electricity markets and industrial policy over the past year suggest its government is now slow-walking the energy transition.
In 2024, for instance, China started making capacity payments to coal-fired power plants. These payments were ostensibly designed to lubricate a plant’s economics as it shifted from 24/7 operation to a supporting role backing up wind and solar. Yet only coal plants — and not, for instance, batteries — were offered these funds, even though batteries can play a similar role more cheaply and China already makes them in scads. Even more striking, coal plants have been pocketing these funds without changing their behavior or even producing less electricity
At the same time, China’s central leadership has cut the revenues that new solar and wind farms receive from generating power. New solar and wind plants are now scheduled to receive less than the same benchmark price that coal receives — although the details of that discount vary by province and remain uncertain in most of them. Observers hope that this lower price, along with a more market-based dispatch scheme, will eventually allow renewables-heavy electricity systems to charge lower rates to consumers and displace more expensive coal power. However, there’s little clarity on if and when that will happen, and in the meantime, new renewables installations are plummeting as developers wait for more information to emerge.
Chinese industrial policy is exacerbating these trends. The world has long talked about Chinese overcapacity. Now even conversation in the Western media has progressed to discussing “involution” — a broader term that centers on the intensive competition that characterizes Chinese capitalism (and society). It suggests that Chinese firms are competing themselves out of business.
The market-leader BYD, for instance, has become synonymous with the Chinese battery-powered auto renaissance, but there are fears that even this seeming titan might have corrupted itself on the way. The company has larded an incredible amount of debt onto its books to fuel its race to the top of the sales charts; now, murmurs abound that the firm might be “the Evergrande of EVs” — a reference to the housing developer that collapsed into bankruptcy earlier this decade with hundreds of billions of dollars in debt. In recent months, BYD’s engine seems to be sputtering, with sales dropping in September 2025 compared with last year.
As such, the government has come in to try to negotiate new terms of competition so that firms do not end up doing irreparable harm to themselves and their future prospects. It is doing so in other sectors as well: In solar, it has tried to create a cartel of polysilicon manufacturers, a solar OPEC of sorts, to make sure that the pricing of that key input to the photovoltaic supply chain is at a level where the producers can survive.
This may all seem positive — and there is certainly an argument that the government could play a role in helping these new sectors negotiate the difficult waters that they find themselves in. But I interpret these efforts as further slow-walking of the energy transition. A slight reframing can help to understand why.
What is literally happening in these meetings? The government is bringing private actors into the same room to bang their heads together and deal with the reality that the current economic system is not working, largely because of intense competition — a problem likely best solved by forcing some of the firms and production capacity to shrink. Firms are unprofitable because exuberant supply has zoomed past current demand, and the country’s markets and politics are not prepared to navigate the potentially needed bankruptcies or their fallout. So the government is intervening, designing actions to generate the outcomes it desires.
Yet there is something contradictory about the government’s approach. A decarbonized world, after all, will be a world without significant numbers of internal combustion vehicles, so traditional automakers will eventually need to shut down or shift into EVs — yet their executives aren’t being dragged in for the same scolding. Likewise, a decarbonized world will be a world without as many coal mines and coal-fired power plants. Firms in the power sector should be scolded for continuing coal production at scale.
These are problems of the mid-transition, as the scholars Emily Grubert and Sara Hastings-Simon have described decarbonization’s current era. But China is further along in this transition than other states, and it could lead in the management and planning required for the transition as well.
China is stuck. For four decades, China’s growth rested on moving abundant cheap labor from low-productivity agriculture to higher productivity sectors, often in urban areas. The physical construction of China’s cities underpinned this development and became its own distorting bubble, launching a cycle of real-estate speculation. The government pricked this bubble in 2020, but since then, Chinese macroeconomic strength has failed to return.
Despite the glimmering nature of its most modern cities, China remains decidedly middle income, with a GDP per capita equivalent to Serbia. Many countries that have grown out of poverty have reached this middle income territory — but then become mired there rather than continuing to develop. This pattern, described as “the middle income trap,” has worried Chinese policymakers for years.
The country is obviously hoping that its new clean industries can offer a substitute motor to power China out of its middle-income status. Its leadership’s apparent decision to slow walk the energy transition, however, looks like a classic example of this “trap.” The leadership seems unwilling to jettison older industries in favor of the higher-value added industries of the future. The fact that the government has previously subsidized these industries just shows the complexity of the political economy challenges facing the regime.
The NDC’s announcement could be seen as an easy win given Trump’s climate backwardness. Clearly that’s what Xi was counting on. But China is too important to be understood only in contrast to the United States — and we should not applaud something that not only fails to recognize global climate targets, but also underplays China’s own development strategy. The country is nearing the release of its next five-year plan. Perhaps that document will incorporate more ambitious targets for the energy transition and decarbonization.
This summer, I visited Ordos in Inner Mongolia, a coal mining region that is now also home to some of China’s huge renewable energy megabases and a zero-carbon industrial park. Tens of thousands still labor in Ordos’ mines and coal-hungry factories, yet they seem like a relic of an earlier age when compared to the scale and precision of the new green industrial facilities. The dirty coal mines may still have history and profits on their side, but it is clear that the future will see their decline and replacement with green technology. I hope that Xi Jinping and the rest of the Chinese political elite come to the same conclusion, and fast.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.
Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.
So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.
It’s still rare to launch a fund abroad, and yet a growing number of U.S. companies and investors are turning to Europe to pilot new technology and validate their concepts before scaling up in more capital-constrained domestic markets
Europe’s emissions trading scheme — and the comparably stable policy environment that makes investors confident it will last — gives emergent climate tech a greater chance at being cost competitive with fossil fuels. For Bronson, this made building a climate tech portfolio somewhere in Europe somewhat of a no-brainer. “In Europe, the regulations were essentially 10 years ahead of where we wanted the Americas and the Asias to be,” Bronson told me. “There were stricter regulations with faster deadlines. And they meant it.”
Of the choice to locate in Ireland, SOSV is in many ways following a model piloted by tech giants Google, Microsoft, Apple, and Meta, all of which established an early presence in the country as a gateway to the broader European market. Given Ireland’s English-speaking population, low corporate tax rate, business-friendly regulations, and easy direct flights to the continent, it’s a sensible choice — though as Bronson acknowledged, not a move that a company successfully fundraising in the U.S. would make.
It can certainly be tricky to manage projects and teams across oceans, and U.S. founders often struggle to find overseas talent with the level of technical expertise and startup experience they’re accustomed to at home. But for the many startups struggling with the fundraising grind, pivoting to Europe can offer a pathway for survival.
It doesn’t hurt that natural gas — the chief rival for many clean energy technologies — is quite a bit more expensive in Europe, especially since Russia’s invasion of Ukraine in 2022. “A lot of our commercial focus today is in Europe because the policy framework is there in Europe, and the underlying economics of energy are very different there,” Raffi Garabedian, CEO of Electric Hydrogen, told me. The company builds electrolyzers that produce green hydrogen, a clean fuel that can replace natural gas in applications ranging from heavy industry to long-haul transport.
But because gas is so cheap in the U.S., the economics of the once-hyped “hydrogen economy” have gotten challenging as policy incentives have disappeared. With natural gas in Texas hovering around $3 per thousand cubic feet, clean hydrogen just can’t compete. But “you go to Spain, where renewable power prices are comparable to what they are in Texas, and yet natural gas is eight bucks — because it’s LNG and imported by pipeline — it’s a very different context,” Garabedian explained.
Two years ago, the EU adopted REDIII — the third revision of its Renewable Energy Directive — which raises the bloc’s binding renewable share target to 42.5% by 2030 and broadens its scope to cover more sectors, including emissions from industrial processes and buildings. It also sets new rules for hydrogen, stipulating that by 2030, at least 42% of the hydrogen used for industrial processes such as steel or chemical production must be green — that is, produced using renewable electricity — increasing to 60% by 2035.
Member countries are now working to transpose these continent-wide regulations into national law, a process Garabedian expects to be finalized by the end of this year or early next. Then, he told me, companies will aim to scale up their projects to ensure that they’re operational by the 2030 deadline. Considering construction timelines, that “brings you to next year or the year after for when we’re going to see offtakes signed at much larger volumes,” Garabedian explained. Most European green hydrogen projects are aiming to help decarbonize petroleum, petrochemical, and biofuel refining, of all things, by replacing hydrogen produced via natural gas.
But that timeline is certainly not a given. Despite its many incentives, Europe has not been immune to the rash of global hydrogen project cancellations driven by high costs and lower than expected demand. As of now, while there are plenty of clean hydrogen projects in the works, only a very small percent have secured binding offtake agreements, and many experts disagree with Garabedian’s view that such agreements are either practical or imminent. Either way, the next few years will be highly determinative.
The thermal battery company Rondo Energy is also looking to the continent for early deployment opportunities, the startup’s Chief Innovation Officer John O’Donnell told me, though it started off close to home. Just a few weeks ago, Rondo turned on its first major system at an oil field in Central California, where it replaced a natural gas-powered boiler with a battery that charges from an off-grid solar array and discharges heat directly to the facility.
Much of the company’s current project pipeline, however, is in Europe, where it’s planning to install its batteries at a chemical plant in Germany, an industrial park in Denmark, and a brewery in Portugal. One reason these countries are attractive is that their utilities and regulators have made it easier for Rondo’s system to secure electricity at wholesale prices, thus allowing the company to take advantage of off-peak renewable energy rates to charge when energy is cheapest. U.S. regulations don’t readily allow for that.
“Every single project there, we’re delivering energy at a lower cost,” O’Donnell told me. He too cited the high price of natural gas in Europe as a key competitive advantage, pointing to the crippling effect energy prices have had on the German chemical industry in particular. “There’s a slow motion apocalypse because of energy supply that’s underway,” he said.
Europe has certainly proven to be a more welcoming and productive policy environment than the U.S., particularly since May, when the Trump administration cut billions of dollars in grants for industrial decarbonization projects — including two that were supposed to incorporate Rondo’s tech. One $75 million grant was for the beverage company Diageo, which planned to install heat batteries to decarbonize its operations in Illinois and Kentucky. Another $375 million grant was for the chemicals company Eastman, which wanted to use Rondo’s batteries at a plastics recycling plant in Texas.
While nobody knew exactly what programs the Trump administration would target, John Tough, co-founder at the software-focused venture firm Energize Capital, told me he’s long understood what a second Trump presidency would mean for the sector. Even before election night, Tough noticed U.S. climate investors clamming up, and was already working to raise a $430 million fund largely backed by European limited partners. So while 90% of the capital in the firm’s first fund came from the U.S., just 40% of the capital in this latest fund does.
“The European groups — the pension funds, sovereign wealth funds, the governments — the conviction they have is so high in climate solutions that our branding message just landed better there,” Tough told me. He estimates that about a quarter to a third of the firm’s portfolio companies are based in Europe, with many generating a significant portion of their revenue from the European market.
But that doesn’t mean it was easy for Energize to convince European LPs to throw their weight behind this latest fund. Since the American market often sets the tone for the global investment atmosphere, there was understandable concern among potential participants about the performance of all climate-focused companies, Tough explained.
Ultimately however, he convinced them that “the data we’re seeing on the ground is not consistent with the rhetoric that can come from the White House.” The strong performance of Energize’s investments, he said, reveals that utility and industrial customers are very much still looking to build a more decentralized, digitized, and clean grid. “The traction of our portfolio is actually the best it’s ever been, at the exact same time that the [U.S.-based] LPs stopped focusing on the space,” Tough told me.
But Europe can’t be a panacea for all of U.S. climate tech’s woes. As many of the experts I talked to noted, while Europe provides a strong environment for trialing new tech, it often lags when it comes to scale. To be globally competitive, the companies that are turning to Europe during this period of turmoil will eventually need to bring down their costs enough to thrive in markets that lack generous incentives and mandates.
But if Europe — with its infinitely more consistent and definitively more supportive policy landscape — can serve as a test bed for demonstrating both the viability of novel climate solutions and the potential to drive down their costs, then it’s certainly time to go all in. Because for many sectors — from green hydrogen to thermal batteries and sustainable transportation fuels — the U.S. has simply given up.
Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.
The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.
“Somehow the reduction in enthusiasm of the Global North is showing that the Global South is moving,” Corrêa do Lago told reporters in Belém, according to The Guardian. “It is not just this year, it has been moving for years, but it did not have the exposure that it has now.”

New York regulators approved an underwater gas pipeline, reversing past decisions and teeing up what could be the first big policy fight between Governor Kathy Hochul and New York City Mayor-elect Zohran Mamdani. The state Department of Environmental Conservation issued what New York Focus described as crucial water permits for the Northeast Supply Enhancement project, a line connecting New York’s outer borough gas network to the fracking fields of Pennsylvania. The agency had previously rejected the project three times. The regulators also announced that the even larger Constitution pipeline between New York and New England would not go ahead. “We need to govern in reality,” Hochul said in a statement. “We are facing war against clean energy from Washington Republicans, including our New York delegation, which is why we have adopted an all-of-the-above approach that includes a continued commitment to renewables and nuclear power to ensure grid reliability and affordability.”
Mamdani stayed mostly mum on climate and energy policy during the campaign, as Heatmap’s Robinson Meyer wrote, though he did propose putting solar panels on school roofs and came out against the pipeline. While Mamdani seems unlikely to back the pipeline Hochul and President Donald Trump have championed, during a mayoral debate he expressed support for the governor’s plan to build a new nuclear plant upstate.
Late last week, Pine Gate Renewables became the largest clean energy developer yet to declare bankruptcy since Trump and Congress overhauled federal policy to quickly phase out tax credits for wind and solar projects. In its Chapter 11 filings, the North Carolina-based company blamed provisions in Trump’s One Big Beautiful Bill Act that put strict limits on the use of equipment from “foreign entities of concern,” such as China. “During the [Inflation Reduction Act] days, pretty much anyone was willing to lend capital against anyone building projects,” Pol Lezcano, director of energy and renewables at the real estate services and investment firm CBRE, told the Financial Times. “That results in developer pipelines that may or may not be realistic.”
Sign up to receive Heatmap AM in your inbox every morning:
The Southwest Power Pool’s board of directors approved an $8.6 billion slate of 50 transmission projects across the grid system’s 14 states. The improvements are set to help the grid meet what it expects to be doubled demand in the next 10 years. The investments are meant to harden the “backbone” of the grid, which the operator said “is at capacity and forecasted load growth will only exacerbate the existing strain,” Utility Dive reported. The grid operator also warned that “simply adding new generation will not resolve the challenges.”
Oil giant Shell and the industrial behemoth Mitsubishi agreed to provide up to $17 million to a startup that plans to build a pilot plant capable of pulling both carbon dioxide and water from the atmosphere. The funding would cover the direct air capture startup Avnos’ Project Cedar. The project could remove 3,000 metric tons of carbon from the atmosphere every year, along with 6,000 tons of clean freshwater. “What you’re seeing in Shell and Mitsubishi investing here is the opportunity to grow with us, to sort of come on this commercialization journey with us, to ultimately get to a place where we’re offering highly cost competitive CO2 removal credits in the market,” Will Kain, CEO of Avnos, told E&E News.
The private capital helps make up for some of the federal funding the Trump administration is expected to cut as part of broad slashes to climate-tech investments. But as Heatmap’s Emily Pontecorvo reported last month from north of the border, Canada is developing into a hot zone of DAC development.
The future of remote sensing will belong to China. At least, that’s what the research suggests. This broad category involves the use of technologies such as lasers, imagery, and hyperspectral imagery, and is key to everything from autonomous driving to climate monitoring. At least 47% of studies in peer-reviewed publications on remote sensing now originate in China, while just 9% come from the United States, according to the New York University paper. That research clout is turning into an economic advantage. China now accounts for the majority of remote sensing patents filed worldwide. “This represents one of the most significant shifts in global technological leadership in recent history,” Debra Laefer, a professor in the NYU Tandon Civil and Urban Engineering program and the lead author, said in a statement.
The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.
In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.
Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.
“Obviously some Trump administration policies have weakened the business case for renewables and therefore also storage,” Eugene Beh, Quino’s founder and CEO, told me when I asked what it was like to fundraise in this environment. “But it’s actually outside the U.S., where the appetite still remains very strong.”
The deployment of battery energy storage in India lags far behind the pace of renewables adoption, presenting both a challenge and an opportunity for the sector. “India does have an opportunity to leapfrog into a more flexible, resilient, and sustainable power system,” Shreyes Shende, a senior research associate at Johns Hopkins’ Net Zero Industrial Policy Lab, told me. The government appears eager to make it happen, setting ambitious targets and offering ample incentives for tech-neutral battery storage deployments, as it looks to lean into novel technologies.
“Indian policymakers have been trying to double down on the R&D and innovation landscape because they’re trying to figure out, how do you reduce dependence on these lithium ion batteries?” Shende said. China dominates the global lithium-ion market, and also has a fractious geopolitical relationship with India, So much like the U.S., India is eager to reduce its dependence on Chinese imports. “Anything that helps you move away from that would only be welcome as long as there’s cost compatibility,” he added
Beh told me that India also presents a natural market for Quino’s expansion, in large part because the key raw material for its proprietary electrolyte chemistry — a clothing dye derived from coal tar — is primarily produced in China and India. But with tariffs and other trade barriers, China poses a much more challenging environment to work in or sell from these days, making the Indian market a simpler choice.
Quino’s dye-based electrolyte is designed to be significantly cheaper than the industry standard, which relies on the element vanadium dissolved in an acidic solution. In vanadium flow batteries, the electrolyte alone can account for roughly 70% of the product’s total cost, Beh said. “We’re using exactly the same hardware as what the vanadium flow battery manufacturers are doing,” he told me minus the most expensive part. “Instead, we use our organic electrolyte in place of vanadium, which will be about one quarter of the cost.”
Like many other companies these days, Beh views data centers as a key market for Quino’s tech — not just because that’s where the money’s at, but also due to one of flow batteries’ core advantages: their extremely long cycle lives. While lithium-ion energy storage systems can only complete from 3,000 to 5,000 cycles before losing 20% or more of their capacity, with flow batteries, the number of cycles doesn’t correlate with longevity at all. That’s because their liquid-based chemistry allows them to charge and discharge without physically stressing the electrodes.
That’s a key advantage for AI data centers, which tend to have spiky usage patterns determined by the time of day and events that trigger surges in web traffic. Many baseload power sources can’t ramp quickly enough to meet spikes in demand, and gas peaker plants are expensive. That makes batteries a great option — especially those that can respond to fluctuations by cycling multiple times per day without degrading their performance.
The company hasn’t announced any partnerships with data center operators to date — though hyperscalers are certainly investing in the Indian market. First up will be getting the company’s demonstration plants online in both California and India. Quino already operates a 100-kilowatt-hour pilot facility near Buffalo, New York, and was awarded a $10 million grant from the California Energy Commission and a $5 million grant from the Department of Energy this year to deploy a larger, 5-megawatt-hour battery at a regional health care center in Southern California. Beh expects that to be operational by the end of 2027.
But its plans in India are both more ambitious and nearer-term. In partnership with Atri, the company plans to build a 150- to 200-megawatt-hour electrolyte production facility, which Beh says should come online next year. With less government funding in the mix, there’s simply less bureaucracy to navigate, he explained. Further streamlining the process is the fact that Atri owns the site where the plant will be built. “Obviously if you have a motivated site owner who’s also an investor in you, then things will go a lot faster,” Beh told me.
The goal for this facility is to enable production of a battery that’s cost-competitive with vanadium flow batteries. “That ought to enable us to enter into a virtuous cycle, where we make something cheaper than vanadium, people doing vanadium will switch to us, that drives more demand, and the cost goes down further,” Beh told me. Then, once the company scales to roughly a gigawatt-hour of annual production, he expects it will be able to offer batteries with a capital cost roughly 30% lower than lithium-ion energy storage systems.
If it achieves that target, in theory at least, the Indian market will be ready. A recent analysis estimates that the country will need 61 gigawatts of energy storage capacity by 2030 to support its goal of 500 gigawatts of clean power, rising to 97 gigawatts by 2032. “If battery prices don’t fall, I think the focus will be towards pumped hydro,” Shende told me. That’s where the vast majority of India’s energy storage comes from today. “But in case they do fall, I think battery storage will lead the way.”
The hope is that by the time Quino is producing at scale overseas, demand and investor interest will be strong enough to support a large domestic manufacturing plant as well. “In the U.S., it feels like a lot of investment attention just turned to AI,” Beh told me, explaining that investors are taking a “wait and see” approach to energy infrastructure such as Quino. But he doesn’t see that lasting. “I think this mega-trend of how we generate and use electricity is just not going away.”