You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Plants are marching north. Native gardening will never be the same.

Thirteen miles isn’t very far: roughly the length of Manhattan or the distance you run in a half marathon. On a freeway, it takes less than 15 minutes to drive.
Multiply 13 by 10, though, and it becomes 130 miles — more than the width of the state of Connecticut. Move the U.S. border 130 miles north, and Whistler Blackcomb becomes an American ski resort; move it south, and Tijuana is the new Los Angeles. If you started walking, it would take you 35 straight hours to cover the distance; if you called an Uber, you’d be looking at a $450 ride.
The temperature regions that determine the local viability of different plants, called plant hardiness zones, are believed to be slipping north at a rate of about 13.3 miles per decade — not a number that sounds especially alarming, but one that will, over a century, add up to dramatically reshape the regional flora of the United States. In addition to being yet another depressing climate statistic, though, that number is also generating a lot of headaches in the surprisingly combustible world of native gardening.
It’s been 16 years (or approximately 21 northward miles) since Douglas Tallamy’s warning in his book Bringing Nature Home that “unless we restore native plants to our suburban ecosystems, the future of biodiversity in the United States is dim.” Though we may still be far from achieving his long-term goal of a “homegrown national park,” in which Americans convert half their yard space to native gardens, Tallamy’s teachings remain hugely influential in gardening and conservation circles (42 states have their own specialized native plant societies promoting these goals).
Tallamy insists that “all plants are not created equal, particularly in their ability to support wildlife.” If we’re to sustain the remaining biodiversity in the U.S., it is essential to feed insects — and in turn, the birds that eat those insects — the foods they’ve evolved to eat. If a plant isn’t native to these ecosystems, then it isn’t worth planting or sustaining. Often, says Tallamy, doing so is actively detrimental to biodiversity goals.
But what even is a native plant in this obviously shifting world? Already, New York City is considered subtropical, capable even of supporting certain hardy palms; by 2040, Seattle could be in the same hardiness zone that central Florida, New Orleans, and parts of Texas are in today. Researchers have seen plants native to the South slowly pushing their ranges north.
Native plants are frequently the species under the most stress from the new weather patterns in their historic ranges. The state tree of Washington, the Western hemlock, for example, is especially susceptible to drought and is struggling to survive in a drier Pacific Northwest. “We’ve found a lot of mortality of trees that should be in the prime in their life,” explained Raymond Larson, an associate director and curator at the University of Washington Botanic Gardens and a contributor to Great Plant Picks, a viability resource for Pacific Northwest gardeners.
As a result, many horticulturalists with an eye on the next century are actively exploring — and recommending — plants that are explicitly not native. Axios Seattle recently published a list of trees that Pete Smith, a program director at the Arbor Day Foundation, believes will be able to tolerate the next 50 to 100 years in the region, and it notably included the Japanese pagoda tree; the pawpaw, a native of the East Coast; and the ginkgo, which is “incredibly tough, very long-lived, and great at tolerating urban stresses” — but an exotic from China that is particularly reviled by Tallamy.
“What honestly most gardeners — many gardeners, anyway — have kind of lost track of is what the word ‘native’ means,” Smith explained to me when I followed up to ask about the globe-spanning range of his recommendations. “It is presumptuous, even, to talk about native plants as if 1492 was some magic date that talks about what is and was native to this continent.”
“Native” doesn’t have a hard and fast definition. In Bringing Nature Home, Tallamy writes that a true native is a plant that interacts “with the community that historically helped shape it,” but he also warns against using too small a timescale when making these determinations: “[A] history measured in centuries is the tiniest drop in the proverbial bucket of evolutionary time.” Native plant purists, Smith added, will argue that “the only quality tree is a tree that was grown from a seed from right underneath the tree that bore that seed. Isn’t that a wonderful ideal? [But] it’s not practical.”
Some native plant proponents have allowed for species that are retreating north (or up) on their own volition since these changes happen slowly and food-chain communities can relocate with them. A number of Southern species in the United States got there in the first place by being pushed down during the last ice age, and have been reclaiming prehistoric ranges as the cold has receded over the last 10,000 years. But ancient forests don’t appear to have migrated as complete ecosystems during these upheavals; it was a race of every-species-for-itself. “There’s a lot more interchangeability among members of an ecosystem than people had thought,” David Jablonski, a paleontologist, told the Smithsonian.
There is also the problem that the climactic zones are moving faster than trees can follow. “The average forest migrates at a rate of roughly 1,640 feet each year,” Wired has written — that is, about three miles in a decade. In order “to outrun climate change,” trees would need to book it north at a rate of “approximately 9,800 to 16,000 feet” a year, or about 10 times as fast. Plenty of foresters aren’t waiting around for that to happen and are seriously exploring the controversial idea of human-assisted migration.
Larson, at the UW Botanic Gardens, meanwhile, said their horticulturalists are looking off-continent for inspiration for the hard years ahead. “We’re experimenting more with plants in Mediterranean climates,” he said, and “also the southern hemisphere: Australia, Chile, New Zealand." Places that have "somewhat similar climates," to the Pacific Northwest, “but tend to get a little bit hotter." And while some of these experiments haven’t panned out as hoped in the past, “we’re going to try them again, because 5 or 10 degrees can make all the difference.”
The conventional wisdom, that introducing or nurturing exotics results in a decline in biodiversity, is also being challenged — often heatedly so. It can seem at times that for every study that expounds on the evils wrought by alien plants, another concludes the exact opposite. The ongoing debate has produced fiery polemics, such as one signed by 19 ecologists and published in Nature in 2011, which announced “it is time … to ditch this preoccupation with the native-alien dichotomy and embrace more dynamic and pragmatic approaches … better suited to our fast-changing planet.” The scientists also swatted down the frequent synonymizing of “nativeness” with “good,” pointing out that “the insect currently suspected to be killing more trees than any other in North America is the native mountain pine beetle.”
(These sorts of back-and-forths are presumably what led former Arnold Arboretum horticulturist Peter Del Tredici, one of the Nature letter’s signatories, to observe, “the use of exotic versus native species … seems to bring out the worst in people, not unlike the debates over gun control and abortion.” Whoever said gardening was boring?)
Arthur Shapiro, a distinguished professor of evolution and ecology at the University of California at Davis, is also among those who have challenged the uncompromising emphasis on the superiority of native plants. “There are many nonnative plants grown in gardens that are immensely useful to butterflies and other pollinators,” Shapiro told me. “And there are many native plants that are completely useless. They might as well be made with rubber or wood.” If you were to uproot every exotic plant in urban California, for instance, you’d “essentially do away with the butterfly fauna.”
That’s partially due to a principle known as ecological fitting, which is “what happens when species with totally disparate histories, that evolved in different parts of the world, come into contact — perhaps as a result of commerce, perhaps as a result of gardening — and they fit together,” said Shapiro. “It’s a marriage made in heaven.” Additionally, oft-vilified “novel ecosystems”, sometimes disparagingly dismissed as “trash ecosystems," arise when exotic species are naturalized due to human influence and/or certain native species recede. Increasingly, though, scientists like Shapiro are viewing these emerging anthropocenic systems as environmental success stories. An unmanaged invasive pine plantation in Puerto Rico, for example, was found to have far more biodiversity than a nearby native-only forest of the same age, Nature recounts; the observation, made in 1979, ran so counter to the established beliefs about the sanctity of native plants that “it took almost a decade" for the resulting paper to pass peer review.
The native/non-native dichotomy is undoubtedly clumsy, so much so that one idea has been to dispense with the unhelpful language altogether. “Neonative,” a term proposed by University of Vienna conservation biologist Franz Essl, for example, could be adapted to describe species that have moved beyond their native ranges and established new foothold populations “due to human-induced changes of the biophysical environment, but not as a result of direct movement by human agency.”
Another idea is to take a step back, put our preconceived notions in check, and learn from what we’re seeing. “As climate changes, communities are going to change, mixtures are going to change,” Shapiro said. “Trying to stop it — except for managing things of economic or medical importance, pests, or disease vectors — is equivalent to trying to plow the sea. It’s futile. So we should actually be paying close attention to what’s happening, because we can learn a lot from it, about how communities self-assemble.”
This isn’t your permission to go plant a bunch of English ivy and scotch broom, though. Two things can potentially both be true: certain native plants have essential ecological functions and some non-native plants can play an important role in shaping future ecosystems. In fact, they’re going to have to, if the climate keeps warming and the hardiness zones continue their upward march.
“We would always tell someone: choose native first,” Smith, of the Arbor Day Foundation, concurred. But at the same time, “Let’s not let the perfect be the enemy of the good.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob takes Jesse through our battery of questions.
Every year, Heatmap asks dozens of climate scientists, officials, and business leaders the same set of questions. It’s an act of temperature-taking we call our Insiders Survey — and our 2026 edition is live now.
In this week’s Shift Key episode, Rob puts Jesse through the survey wringer. What is the most exciting climate tech company? Are data centers slowing down decarbonization? And will a country attempt the global deployment of solar radiation management within the next decade? It’s a fun one! Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Next question — you have to pick one, and then you’ll get a free response section. Do you think AI and data centers energy needs are significantly slowing down decarbonization, yes or no?
Jesse Jenkins: Significantly. Yeah, I guess significantly would … yes, I think so. I think in general, the challenge we have with decarbonization is we have to add new, clean supplies of energy faster than demand growth. And so, in order to make progress on existing emissions, you have to exceed the demand growth, meet all of that growth with clean resources, and then start to drive down emissions.
If you look at what we’ve talked about — are China’s emissions peaking, or global emissions peaking? I mean, that really is a game. It’s a race between how fast we can add clean supply and how fast demand for energy’s growing. And so in the power sector in particular, an area where we’ve made the most progress in recent years in cutting emissions, now having a large, and rapid growth in electricity demand for a whole new sector of the economy — and one that doesn’t directly contribute to decarbonization, like, say, in contrast to electric vehicles or electrifying heating —certainly makes things harder. It just makes that you have to run that race even faster.
I would say in the U.S. context in particular, in a combination of the Trump policy environment, we are not keeping pace, right? We are not going to be able to both meet the large demand growth and eat into the substantial remaining emissions that we have from coal and gas in our power sector. And in particular, I think we’re going to see a lot more coal generation over the next decade than we would’ve otherwise without both AI and without the repeal of the Biden-era EPA regulations, which were going to really drive the entire coal fleet into a moment of truth, right? Are they gonna retrofit for carbon capture? Are they going to retire? Was basically their option, by 2035.
And so without that, we still have on the order of 150 gigawatts of coal-fired power plants in the United States, and many of those were on the way out, and I think they’re getting a second lease on life because of the fact that demand for energy and particularly capacity are growing so rapidly that a lot of them are now saying, Hey, you know what, we can actually make quite a bit of money if we stick around for another 5, 10, 15 years. So yeah, I’d say that’s significantly harder.
That isn’t an indictment to say we shouldn’t do AI. It’s happening. It’s valuable, and we need to meet as much, if not all of that growth with clean energy. But then we still have to try to go faster, and that’s the key.
Mentioned:
This year’s Heatmap Insiders Survey
Last year’s Heatmap Insiders Survey
The best PDF Jesse read this year: Flexible Data Centers: A Faster, More Affordable Path to Power
The best PDF Rob read this year: George Marshall’s Guide to Merleau-Ponty's Phenomenology of Perception
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
They still want to decarbonize, but they’re over the jargon.
Where does the fight to decarbonize the global economy go from here? The past 12 months, after all, have been bleak. Donald Trump has pulled the United States out of the Paris Agreement (again) and is trying to leave a precursor United Nations climate treaty, as well. He ripped out half the Inflation Reduction Act, sidetracked the Environmental Protection Administration, and rechristened the Energy Department’s in-house bank in the name of “energy dominance.” Even nonpartisan weather research — like that conducted by the National Center for Atmospheric Research — is getting shut down by Trump’s ideologues. And in the days before we went to press, Trump invaded Venezuela with the explicit goal (he claims) of taking its oil.
Abroad, the picture hardly seems rosier. China’s new climate pledge struck many observers as underwhelming. Mark Carney, who once led the effort to decarbonize global finance, won Canada’s premiership after promising to lift parts of that country’s carbon tax — then struck a “grand bargain” with fossiliferous Alberta. Even Europe seems to dither between its climate goals, its economic security, and the need for faster growth.
Now would be a good time, we thought, for an industry-wide check-in. So we called up 55 of the most discerning and often disputatious voices in climate and clean energy — the scientists, researchers, innovators, and reformers who are already shaping our climate future. Some of them led the Biden administration’s climate policy from within the White House; others are harsh or heterodox critics of mainstream environmentalism. And a few more are on the front lines right now, tasked with responding to Trump’s policies from the halls of Congress — or the ivory minarets of academia.
We asked them all the same questions, including: Which key decarbonization technology is not ready for primetime? Who in the Trump administration has been the worst for decarbonization? And how hot is the planet set to get in 2100, really? (Among other queries.) Their answers — as summarized and tabulated by my colleagues — are available in these pages.
You can see whether insiders think data centers are slowing down decarbonization and what folks have learned (or, at least, say they’ve learned) from the repeal of clean energy tax credits in the Inflation Reduction Act.
But from many different respondents, a mood emerged: a kind of exhaustion with “climate” as the right frame through which to understand the fractious mixture of electrification, pollution reduction, clean energy development, and other goals that people who care about climate change actually pursue. When we asked what piece of climate jargon people would most like to ban, we expected most answers to dwell on the various colors of hydrogen (green, blue, orange, chartreuse), perhaps, or the alphabet soup of acronyms around carbon removal (CDR, DAC, CCS, CCUS, MRV). Instead, we got:
“‘Climate.’ Literally the word climate, I would just get rid of it completely,” one venture capitalist told us. “I would love to see people not use 'climate change' as a predominant way to talk to people about a global challenge like this,” seconded a former Washington official. “And who knows what a ‘greenhouse gas emission’ is in the real world?” A lobbyist agreed: “Climate change, unfortunately, has become too politicized … I’d rather talk about decarbonization than climate change.”
Not everyone was as willing to shift to decarbonization, but most welcomed some form of specificity. “I’ve always tried to reframe climate change to be more personal and to recognize it is literally the biggest health challenge of our lives,” the former official said. The VC said we should “get back to the basics of, are you in the energy business? Are you in the agriculture business? Are you in transportation, logistics, manufacturing?”
“You're in a business,” they added, “there is no climate business.”
Not everyone hated “climate” quite as much — but others mentioned a phrase including the word. One think tanker wanted to nix “climate emergency.” Another scholar said: “I think the ‘climate justice’ term — not the idea — but I think the term got spread so widely that it became kind of difficult to understand what it was even referring to.” And one climate scientist didn’t have a problem with climate change, per se, but did say that people should pare back how they discuss it and back off “the notion that climate change will result in human extinction, or the sudden and imminent end to human civilization.”
There were other points of agreement. Four people wanted to ban “net zero” or “carbon neutrality.” One scientist said activists should back off fossil gas — “I know we’re always trying to try convince people of something, but, like, the entire world calls it ’natural gas’” — and another scientist said that they wished people would stop “micromanaging” language: “People continually changing jargon to try and find the magic words that make something different than it is — that annoys me.”
Two more academics added they wish to banish discussion of “overshoot”: “It’s not clear if it's referring to temperatures or emissions — I just don't think it's a helpful frame for thinking about the problem.”
“Unit economics,” “greenwashing,” and — yes — the whole spectrum of hydrogen colors came in for a lashing. But perhaps the most distinctive ban suggestion came from Todd Stern, the former chief U.S. climate diplomat, who negotiated the Kyoto Protocol and the Paris Agreement.
“I hate it when people say ’are you going to COP?’” he told me, referring to the United Nations’ annual climate summit, officially known as the Conference of the Parties. His issue wasn’t calling it “COP,” he clarified. It was dropping the definite article.
“The way I see it, no one has the right to suddenly become such intimate pals with ‘COP.’ You go to the ball game or the conference or what have you. And you go to ‘the COP,’” he said. “I am clearly losing this battle, but no one will ever hear me drop the ‘the.’”
Now, since I talked to Stern, the United States has moved to drop the COP entirely — with or without the “the” — because Trump took us out of the climate treaty under whose aegis the COP is held. But precision still counts, even in unfriendly times. And throughout the rest of this package, you’ll find insiders trying to find a path forward in thoughtful, insightful, and precise ways.
You’ll also find them remaining surprisingly upbeat — and even more optimistic, in some ways, than they were last year. Twelve months ago, 30% of our insider panel thought China would peak its emissions in the 2020s; this year, a plurality said the peak would come this decade. Roughly the same share of respondents this year as last year thought the U.S. would hit net zero in the 2060s. Trump might be setting back American climate action in the near term. But some of the most important long-term trends remain unchanged.
OUR PANEL INCLUDED… Gavin Schmidt, director of the NASA Goddard Institute for Space Studies | Ken Caldeira, senior scientist emeritus at the Carnegie Institution for Science and visiting scholar at Stanford University | Kate Marvel, research physicist at the NASA Goddard Institute for Space Studies | Holly Jean Buck, associate professor of environment and sustainability at the University at Buffalo | Kim Cobb, climate scientist and director of the Institute at Brown for Environment and Society | Jennifer Wilcox, chemical engineering professor at the University of Pennsylvania and former U.S. Assistant Secretary for Fossil Energy and Carbon Management | Michael Greenstone, economist and director of the Energy Policy Institute at the University of Chicago | Solomon Hsiang, professor of global environmental policy at Stanford University | Chris Bataille, global fellow at Columbia University’s Center on Global Energy Policy | Danny Cullenward, senior fellow at the Kleinman Center for Energy Policy at the University of Pennsylvania | J. Mijin Cha, environmental studies professor at UC Santa Cruz and fellow at Cornell University’s Climate Jobs Institute | Lynne Kiesling, director of the Institute for Regulatory Law and Economics at Northwestern University | Daniel Swain, climate scientist at the University of California Agriculture and Natural Resources | Emily Grubert, sustainable energy policy professor at the University of Notre Dame | Jon Norman, president of Hydrostor | Chris Creed, managing partner at Galvanize Climate Solutions | Amy Heart, senior vice president of public policy at Sunrun | Kate Brandt, chief sustainability officer at Google | Sophie Purdom, managing partner at Planeteer Capital and co-founder of CTVC | Lara Pierpoint, managing director at Trellis Climate | Andrew Beebe, managing director at Obvious Ventures | Gabriel Kra, managing director and co-founder of Prelude Ventures | Joe Goodman, managing partner and co-founder of VoLo Earth Ventures | Erika Reinhardt, executive director and co-founder of Spark Climate Solutions | Dawn Lippert, founder and CEO of Elemental Impact and general partner at Earthshot Ventures | Rajesh Swaminathan, partner at Khosla Ventures | Rob Davies, CEO of Sublime Systems | John Arnold, philanthropist and co-founder of Arnold Ventures | Gabe Kleinman, operating partner at Emerson Collective | Amy Duffuor, co-founder and general partner at Azolla Ventures | Amy Francetic, managing general partner and founder of Buoyant Ventures | Tom Chi, founding partner at At One Ventures | Francis O’Sullivan, managing director at S2G Investments | Cooper Rinzler, partner at Breakthrough Energy Ventures | Gina McCarthy, former administrator of the U.S. Environmental Protection Agency | Neil Chatterjee, former commissioner of the Federal Energy Regulatory Commission | Representative Scott Peters, member of the U.S. House of Representatives | Todd Stern, former U.S. special envoy for climate change | Representative Sean Casten, member of the U.S. House of Representatives | Representative Mike Levin, member of the U.S. House of Representatives | Zeke Hausfather, climate research lead at Stripe and research scientist at Berkeley Earth | Shuchi Talati, founder and executive director of the Alliance for Just Deliberation on Solar Geoengineering | Nat Bullard, co-founder of Halcyon | Bill McKibben, environmentalist and founder of 350.org | Ilaria Mazzocco, senior fellow at the Center for Strategic and International Studies | Leah Stokes, professor of environmental politics at UC Santa Barbara | Noah Kaufman, senior research scholar at Columbia University’s Center on Global Energy Policy | Arvind Ravikumar, energy systems professor at the University of Texas at Austin | Jessica Green, political scientist at the University of Toronto | Jonas Nahm, energy policy professor at Johns Hopkins SAIS | Armond Cohen, executive director of the Clean Air Task Force | Costa Samaras, director of the Scott Institute for Energy Innovation at Carnegie Mellon University | John Larsen, partner at Rhodium Group | Alex Trembath, executive director of the Breakthrough Institute | Alex Flint, executive director of the Alliance for Market Solutions
The Heatmap Insiders Survey of 55 invited expert respondents was conducted by Heatmap News reporters during November and December 2025. Responses were collected via phone interviews. All participants were given the opportunity to record responses anonymously. Not all respondents answered all questions.
Plus, which is the best hyperscaler on climate — and which is the worst?
The biggest story in energy right now is data centers.
After decades of slow load growth, forecasters are almost competing with each other to predict the most eye-popping figure for how much new electricity demand data centers will add to the grid. And with the existing electricity system with its backbone of natural gas, more data centers could mean higher emissions.
Hyperscalers with sustainability goals are already reporting higher emissions, and technology companies are telling investors that they plan to invest hundreds of billions, if not trillions of dollars, into new data centers, increasingly at gigawatt scale.
And yet when we asked our Heatmap survey participants “Do you think AI and data centers’ energy needs are significantly slowing down decarbonization?” only about 34% said they would, compared to 66% who said they wouldn’t.
There were some intriguing differences between different types of respondents. Among our “innovator” respondents — venture capitalists, founders, and executives working at climate tech startups — the overwhelming majority said that AI and data centers are not slowing down decarbonization. “I think it’s the inverse — I think we want to launch the next generation of technologies when there’s demand growth and opportunity to sell into a slightly higher priced, non-commoditized market,” Joe Goodman co-founder and managing partner at VoLo Earth Ventures, told us.
Not everyone in Silicon Valley is so optimistic, however. “I think in a different political environment, it may have been a true accelerant,” one VC told us. “But in this political environment, it’s a true albatross because it’s creating so many more emissions. It’s creating so much stress on the grid. We’re not deploying the kinds of solutions that would be effective."
Scientists were least in agreement on the question. While only 47% of scientists thought the growth of data centers would significantly slow down decarbonization, most of the pessimistic camp was in the social sciences. In total, over 62% of the physical scientists we surveyed thought data centers weren’t slowing down decarbonization, compared to a third of social scientists.
Michael Greenstone, a University of Chicago economist, told us he didn’t see data centers and artificial intelligence as any different from any other use of energy. “I also think air conditioning and lighting, computing, and 57,000 other uses of electricity are slowing down decarbonization,” he said. The real answer is the world is not trying to minimize climate change.”
Mijin Cha, an assistant professor of environment studies at the University of California Santa Cruz, was even more gloomy, telling us, “Not only do I think it’s slowing down decarbonization, I think it is permanently extending the life of fossil fuels, especially as it is now unmitigated growth.”
Some took issue with the premise of the question, expressing skepticism of the entire AI industry. “I’m actually of the opinion that most of the AI and data center plans are a massive bubble,” a scientist told us. “And so, are there plans that would be disruptive to emissions? Yes. Are they actually doing anything to emissions yet? Not obvious.”
We also asked respondents to name the “best” and “worst” hyperscalers, large technology companies pursuing the data center buildout. Many of these companies have some kind of renewables or sustainability goal, but there are meaningful differences among them. Google and Microsoft look to match their emissions with non-carbon-power generation in the same geographic area and at the same time. The approach used by Meta and Amazon, on the other hand, is to develop renewable projects that have the biggest “bang for the buck” on global emissions by siting them in areas with high emissions that the renewable generation can be said to displace.
Among our respondents, the 24/7 “time and place” approach is the clear winner.
Google was the “best” pick for 19 respondents, including six who said “Google and Microsoft.” By contrast, Amazon and Meta had just three votes combined.
As for the “worst,” there was no clear consensus, although two respondents from the social sciences picked “everyone besides Microsoft and Google” and “everyone but Google and Microsoft.” Another one told us, “The best is a tie between Microsoft and Google. Everyone else is in the bottom category.”
A third social scientist summed it up even more pungently. “Google is the best, Meta is the worst. Evil corporation” — though with more expletives than that.
The Heatmap Insiders Survey of 55 invited expert respondents was conducted by Heatmap News reporters during November and December 2025. Responses were collected via phone interviews. All participants were given the opportunity to record responses anonymously. Not all respondents answered all questions.