The Fight

Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Q&A

How Data Center Developers Are Navigating the Battery Fire Freakout

A conversation with Spencer Hanes of EnerVenue

Spencer.
Heatmap Illustration

Today’s conversation is with Spencer Hanes, vice president of international business development for long-duration battery firm EnerVenue and a veteran in clean energy infrastructure development. I reached out to Hanes for two reasons: One, I wanted to gab about solutions, for once, and also because he expressed an interest in discussing how data center companies are approaching the media-driven battery safety panic sweeping renewable energy development. EnerVenue doesn’t use lithium-ion batteries – it uses metal-hydrogen, which Hanes told me may have a much lower risk of thermal runaway (a.k.a. unstoppable fire).

I really appreciated our conversation because, well, it left me feeling like battery alternatives might become an easy way for folks to dodge the fire freakout permeating headlines and local government hearing rooms.

This conversation has been lightly edited for clarity.

From a developer’s perspective, if you’re working in utility-scale battery development, why ditch lithium-ion batteries?

My first battery project was at Duke Energy in 2010. It was a lead-acid battery project in Texas. It was the first time we’d incorporated batteries into a renewables project, and it was probably the biggest in the northern hemisphere. Now I don’t even think it is the biggest in Texas, but it was a big step forward.

What developers are finding is that lithium batteries don’t last as long as the developers would like them to. That means they’ve got a shelf life of 7,000 cycles, maybe 8,000 cycles, and it depends on how you use them – lithium ion batteries have to perform under the perfect environment or they can be damaged. Our batteries, on the other hand, are incredibly flexible, and we have a much more robust product that we think is safer and longer lasting than lithium – which has its place, but there are more and more safety issues around it. [There’s] virtually no risk of thermal runaway with our battery.

So I recently had a lithium-ion battery explode on me for the first time – it sparked up and fused to an electrical cable. It was very surprising, and as someone who writes about this stuff a lot, it still took me aback. As someone who is interacting with folks in data center development spaces, seeking battery storage for their operations, how are they digesting the anxieties around battery failures?

Well, the good news is that the data center developers are just trying to get electrons where they can find them. It's hard to find any sort of generation resource right now. Solar and batteries are just the easiest to find.

The safety piece is always going to be top of mind, though. They’re going to build redundancies into their battery projects, wall them off and containerize different batteries so if there’s a spark it doesn’t propagate.

Because data centers need electrons quickly right now, these companies are immune to the battery safety anxieties percolating in the public right now?

Yeah. They’ve been using them for a long time, they’re familiar with them. But the data centers and the big power users are sometimes stressing the lithium-ion batteries in ways they can no longer handle.

Do you feel like data center companies, big power users, do they get the inherent risks from a social license perspective and a siting perspective in using big lithium-ion batteries?

I think a lot of battery projects are being developed in containers because of fire issues, so if there is an issue it’s contained, and that’s a best practice right now.

What would be better is if there was a zero risk of thermal runaway. I think there’s a growing need for other technologies to come along that are safer and more utility-grade, able to serve multiple purposes. But the data center companies are very smart about how they’re developing, and they’re not going to do it in a way that creates problems for other parts of the data center.

Are there ways to avoid building out a lot of batteries? Maybe minimizing how many batteries are used on site, or how much infrastructure needs to be put on site to minimize fire risk?

I think unfortunately it's largely a case by case determination in where you are. I’m running across more and more engineering firms that aren’t comfortable with even the safest batteries being inside a building. Now, everyone wants them containerized because a thermal runaway event is a catastrophic risk no one wants to take.

EnerVenue has a product that fits that profile. There are many others that fit that profile, as well. We need many more options of technologies that can fit the bill. Lithium has a really important role in our society, doing well enough in phones and laptops, but we think we have a competitive offering for grid scale energy storage.

From your vantage point, do you see data center development as the growth area for storage in the U.S. right now?

A year ago I’d get a call once a quarter, and now I’m fielding calls every month. It's because there’s such a crunch on generation. If you put a battery with a data center … everybody wants to say the centers are operating 99.9% of the time, but they’re also not operating at 100% capacity all day, so if they can generate electricity and store it in a battery to use when rates are cheaper or when there’s a constraint on the grid, that’s a benefit to them.

Yellow

This article is exclusively
for Heatmap Plus subscribers.

Go deeper inside the politics, projects, and personalities
shaping the energy transition.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Spotlight

Wind Farm Trump Killed Derails a Major Transmission Line

The collateral damage from the Lava Ridge wind project might now include a proposed 285-mile transmission line initially approved by federal regulators in the 1990s.

The western United States.
Heatmap Illustration/Library of Congress, Getty Images

The same movement that got Trump to kill the Lava Ridge wind farm Trump killed has appeared to derail a longstanding transmission project that’s supposed to connect sought-after areas for wind energy in Idaho to power-hungry places out West.

The Southwest Intertie Project-North, also known as SWIP-N, is a proposed 285-mile transmission line initially approved by federal regulators in the 1990s. If built, SWIP-N is supposed to feed power from the wind-swept plains of southern Idaho to the Southwest, while shooting electrons – at least some generated from solar power – back up north into Idaho from Nevada, Utah, and Arizona. In California, regulators have identified the line as crucial for getting cleaner wind energy into the state’s grid to meet climate goals.

Keep reading...Show less
Yellow
Hotspots

Solar Threats, Quiet Cancellations, and One Nice Thing

The week’s most important news around renewable project fights.

Solar Threats, Quiet Cancellations, and One Nice Thing
Heatmap Illustration/Getty Images

1. Western Nevada — The Esmeralda 7 solar mega-project may be no more.

  • Last night I broke the news that the Bureau of Land Management quietly updated the permitting website for Esmeralda 7 to reflect project cancelation. BLM did so with no public statement and so far, none of the companies involved — NextEra, Invenergy, ConnectGen, and more — have said anything about it.
  • Esmeralda 7 was all set to receive its record of decision as soon as July, until the Trump administration froze permitting for solar projects on federal lands. The roughly 6.2 gigawatt mega-project had been stalled ever since.
  • It’s unclear if this means all of the components within Esmeralda 7 are done, or if facilities may be allowed to continue through permitting on a project-by-project basis. Judging from the messages I’ve fielded this morning so far, confusion reigns supreme here.

2. Washoe County, Nevada – Elsewhere in Nevada, the Greenlink North transmission line has been delayed by at least another month.

Keep reading...Show less
Yellow
Spotlight

Data Centers Collide with Local Restrictions on Renewables

A review of Heatmap Pro data reveals a troubling new trend in data center development.

A data center and a backyard.
Heatmap Illustration/Getty Images

Data centers are being built in places that restrict renewable energy. There are significant implications for our future energy grid – but it’s unclear if this behavior will lead to tech companies eschewing renewables or finding novel ways to still meet their clean energy commitments.

In the previous edition of The Fight, I began chronicling the data center boom and a nascent backlash to it by talking about Google and what would’ve been its second data center in southern Indianapolis, if the city had not rejected it last Monday. As I learned about Google’s practices in Indiana, I focused on the company’s first project – a $2 billion facility in Fort Wayne, because it is being built in a county where officials have instituted a cumbersome restrictive ordinance on large-scale solar energy. The county commission recently voted to make the ordinance more restrictive, unanimously agreeing to institute a 1,000-foot setback to take effect in early November, pending final approval from the county’s planning commission.

Keep reading...Show less
Yellow