You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
New rules governing how companies report their scope 2 emissions have pit tech giant against tech giant and scholars against each other.
All summer, as the repeal of wind and solar tax credits and the surging power demands of data centers captured the spotlight, a more obscure but equally significant clean energy fight was unfolding in the background. Sustainability executives, academics, and carbon accounting experts have been sparring for months over how businesses should measure their electricity emissions.
The outcome could be just as consequential for shaping renewable energy markets and cleaning up the power grid as the aforementioned subsidies — perhaps even more so because those subsidies are going away. It will influence where and how — and potentially even whether — companies continue to voluntarily invest in clean energy. It has pitted tech heavyweights like Google and Microsoft against peers Meta and Amazon, all of which are racing each other to power their artificial intelligence operations without abandoning their sustainability commitments. And it could affect the pace of emissions reductions for decades to come.
In essence, the fight is over how to appraise the climate benefits of companies’ clean power purchases. The arena is the Greenhouse Gas Protocol, a nonprofit that creates voluntary emissions reporting standards. Companies use these standards to calculate emissions from their direct operations, from the electricity and gas that powers and heats their buildings, and from their supply chains. If you’ve ever seen a brand claim it “runs on 100% renewable energy,” that statement is likely backed by a Greenhouse Gas Protocol-sanctioned methodology.
For years, however, critics have poked holes in the group’s accounting rules and assumptions, charging it with enabling greenwashing. In response, the organization has decided to overhaul its standards, including for how companies should measure their electricity footprint, known as “scope 2” emissions.
The Greenhouse Gas Protocol first convened a technical working group to revise its Scope 2 Standard last September. By late June, the group had finalized a draft proposal with more rigorous criteria for clean energy claims, despite intense pushback on the underlying direction from companies and clean energy groups.
A flurry of op-eds, essays, and LinkedIn posts accused the working group of being on the “wrong track,” and called the proposal a “disaster” with “unintended consequences.” The Clean Energy Buyers Association, a trade group, penned a letter saying it was “inefficient and infeasible for most buyers and may curtail ambitious global climate action.” Similarly, the American Council on Renewable Energy warned that the plan “could unintentionally chill investment and growth in the clean energy sector.”
Next the draft will face a 60-day public consultation period that begins in early October. “There’ll be pushback from every direction,” Matthew Brander, a professor of carbon accounting at the University of Edinburgh and a member of the Scope 2 Working Group, told me. Ultimately, it will be up to the Working Group, the Protocol’s Independent Standards Board, and its Steering Committee, to decide whether the proposal will be adopted or significantly revised.
The challenge of creating a defensible standard begins with the fundamental physics of electricity. On the power grid, electrons from coal- and natural gas-fired power plants intermingle with those from wind and solar farms. There’s no way for companies hooking up to the grid to choose which electrons get delivered to their doors or opt out of certain resources. So if they want to reduce their carbon footprints, they can either decrease their energy consumption — by making their operations more efficient, say, or installing on-site solar panels — or they can turn to financial instruments such as renewable energy certificates, or RECs.
In general, a REC certifies that one megawatt-hour of clean power was generated, at some point, somewhere. The current Scope 2 Standard treats all RECs as interchangeable, but in reality, some RECs are far more effective than others at reducing emissions. The question now is how to improve the standard to account for these differences.
“There is no absolute truth,” Wilson Ricks, an engineering postdoctoral researcher at Princeton University and working group member, told me back in June. “I mean, there are more or less absolute truths about things like how much emissions are going into the atmosphere. But the system for how companies report a certain number, and what they’re able to claim about that number, is ultimately up to us.”
The current standard, finalized in 2015, instructs companies to report two numbers for their scope 2 emissions, based on two different methodologies. The formula for the first is straightforward: multiply the amount of electricity your facilities consume in a given year by the average emissions produced by the local power grids where you operate. This “location-based” number is a decent approximation of the carbon emitted as a result of the company’s actual energy use.
If the company buys RECs or similar market-based instruments, it can also calculate its “market-based” emissions. Under the 2015 standard, if a company consumed 100 megawatt-hours in a year and bought 100 megawatt-hours’ worth of certificates from a solar farm, it could report that its scope 2 emissions, under the market-based method, were zero. This is what enables companies to claim they “run on 100% renewable energy.”
RECs are fundamentally different from carbon offsets, in that they do not certify that any specific amount of emissions has been prevented. They can cut carbon indirectly by creating an additional revenue stream for renewable energy projects. But when a company buys RECs from a solar project in California, where the grid is saturated with solar, it will do less to reduce emissions than if it bought RECs from a solar project in Wyoming, where the grid is still largely powered by coal, or from a battery storage project in California, which can produce clean power at night.
There are other ways RECs can vary — for instance, companies can buy them directly from power producers by means of a long-term contract, or as one-off purchases on the spot market. Spot market REC purchases are generally less effective at displacing fossil fuels because they’re more likely to come from pre-existing wind and solar farms — sometimes ones that have been operating for years and would continue with or without REC sales. Long-term contracts, by contrast, can help get new clean energy projects financed because the guaranteed revenue helps developers secure financing. (There are exceptions to these rules, but these are broadly the dynamics.)
All this is to say that the current standard allows for two companies that consumed the same amount of power and bought the same number of RECs to report that they have “zero emissions,” even if one helped reduce emissions by a lot and the other did little to nothing. Almost everyone agrees the situation can be improved. The question is how.
The proposal set for public comment next month introduces more granularity to the rules around RECs. Instead of tallying up annual aggregate energy use, companies would have to tally it up by hour and location. To lower companies' scope 2 footprints further, purchased RECs will have to be generated within the same grid region as the company’s operations, and match a distinct hour of consumption. (This “hourly matching” approach may sound familiar to anyone who followed the fight over the green hydrogen tax credit rules.)
Proponents see this as a way to make companies’ claims more credible — businesses would no longer be able to say they were using solar power at night, or wind power generated in Texas to supply a factory in Maine. While companies would still not be literally consuming the power from the RECs they buy, it would at least be theoretically possible that they could be. “It’s really, in my view, taking how we do electricity accounting back to some fundamentals of how the power system itself works,” Killian Daly, executive director of the nonprofit EnergyTag, which advocates for hourly matching, told me.
The granularity camp also argues that these rules create better incentives. Today, companies mostly buy solar RECs because they’re cheap and abundant. But solar alone can’t get us to zero emissions electricity, Ricks told me. Hourly matching will force companies to consider signing contracts with energy storage and geothermal projects, for example, or reducing their energy use during times when there’s less clean energy available. “It incentivizes the actions and investments in the technologies and business practices that will be needed to actually finish the job of decarbonizing grids,” he said.
While the standard is technically voluntary, companies that object to the revision will likely be stuck with it, as governments in California and Europe have started to integrate the Greenhouse Gas Protocol’s methodologies into their mandatory corporate disclosure rules.
The proposal’s critics, however, contend that time and location matching will be so costly and difficult to implement that it may lead companies to simply stop buying clean energy. One analysis by the electricity data science nonprofit WattTime found that the draft revision could increase emissions compared to the status quo if it causes a decline in corporate clean power procurement. “We’re looking at a potentially really catastrophic failure of the renewable energy market,” Gavin McCormick, the co-founder and executive director of WattTime, told me.
Another concern is that companies with operations in multiple regions could shift from signing long-term contracts for RECs, often called power purchase agreements, to relying on the spot market. These contracts must be large to be beneficial for developers because negotiating multiple offtake agreements for a single renewable energy project increases costs and risk. Such deals may still make sense for big energy users like data centers, but a company like Starbucks, with cafes throughout the country, will have to start sourcing fewer RECs in more places to cover all the parts of the world where they operate.
The granularity fans assert that their proposal will not be as challenging or expensive as critics claim — and regardless, they argue, real decarbonization is difficult. It should be hard for companies to make bold claims like saying they are 100% clean, Daly told me. “We need to get to a place where companies can be celebrated for being like, I’m not 100% matched, but I will be in five years,” he said.
The proposal does include carve-outs allowing smaller companies to continue to use annual matching and for legacy clean energy contracts, even if they don’t meet hourly or location requirements. But critics like McCormick argue that the whole point of revising the standard is to help catalyze greater emission reductions. Less participation in the market would hurt that goal — but more than that, these accounting rules aren’t designed to measure emissions, let alone maximize real-world emission reductions. You could still have one company that spends the time and money to invest in scarce resources at odd hours and achieves 60% clean power, while another achieves the same proportion by continuing to buy abundant solar RECs. Both would still get to claim the same sustainability laurels.
The biggest corporate defender of time and location matching is Google. On the other side are tech giants Meta and Amazon, among others, arguing for an approach more explicitly focused on emissions. They want the Greenhouse Gas Protocol to endorse a different accounting scheme that measures the fossil fuel emissions displaced by a given clean energy purchase and allows companies to subtract that amount from their total scope 2 footprint — much more akin to the way carbon offsets work.
If done right, this method would recognize the difference between a solar REC in California and one in Wyoming. It would give companies more flexibility, potentially deploying capital to less developed parts of the world that need help to decarbonize. It could also, eventually, encourage investment in less mature and therefore more expensive resources, like energy storage and geothermal — although perhaps not until there’s solar panels on every corner of the globe.
This idea, too, is risky. Calculating the real-world emissions impact of a REC, which the scope 2 working group calls “consequential accounting” is an exercise in counterfactuals. It requires making assumptions about what the world would have looked like if the REC hadn’t been purchased, both in the near term and long term. Would the clean energy have been generated anyway?
McCormick, who is a proponent of this emissions-focused approach, argues that it’s possible to measure the counterfactual in the electricity market with greater certainty than with something like forestry carbon offsets. With electricity, he told me, “there's five minute-level data for almost every power plant in the world, as opposed to forests. If you're lucky, you measure some forests, once a year. It's like a factor of 10,000 times more data, so all the models are more accurate.”
Some granularity proponents, including Ricks, agree that consequential accounting is valuable and could have a place in corporate reporting, but worry that it’s ripe for abuse. “At the end of the day, you can't ever verify whether the system you're using to assign a given company a given number is right, because you can't observe that counterfactual world,” he said. “We need to be very cautious about how it’s designed, and also how companies actually report what they’re doing and what level of confidence is communicated.”
Both proposals are flawed, and both have potential to allow at least some companies to claim progress on paper while having little real-world impact. In some ways, the disagreement is more philosophical than scientific. What should this standard be trying to achieve? Should it be steering corporate dollars into clean energy, accuracy of claims be damned? Or should it be protecting companies from accusations of greenwashing? What impacts do we care about more, faster emissions reductions or strategic decarbonization?
“They’re actually not opposing views,” McCormick told me. “There’s these people making this point and there’s these people making this point. They’re running into each other, but they’re actually not saying opposite things.”
To Michael Gillenwater, executive director of the Greenhouse Gas Management Institute, a carbon accounting research and training nonprofit, people are attempting to hide policy questions within the logic and principles of accounting. “We’re asking the emissions inventories to do too much — to do more than they can — and therefore we end up with a mess,” he told me. Corporate disclosures serve many different purposes — helping investors assess risk, informing a company’s internal target setting and performance tracking, creating transparency for consumers. “A corporate inventory might be one little piece of that puzzle,” he said.
Gillenwater is among those that think the working group’s time- and location-matching proposal would stifle corporate investment in clean energy when the goal should be to foster it. But his preferred solution is to forget trying to come up with a single metric and to encourage companies to make multiple disclosures. Companies could publish their location-based greenhouse gas inventory and then use market-based accounting to make a separate “mitigation intervention statement.” To sum it up, Gillenwater said, “keep the emissions inventory clean.”
The risk there is that the public — or indeed anyone not deeply versed in these nuances — will not understand the difference. That’s why Brander, the Edinburgh professor, argues that regardless of how it all shakes out, the Greenhouse Gas Protocol itself needs to provide more explicit guidance on what these numbers mean and how companies are allowed to talk about them.
“At the moment, the current proposals don’t include any text on how to interpret the numbers,” he said. “It’s almost incredible, really, for an accounting standard to say, here’s a number, but we’re not going to tell you how to interpret it. It’s really problematic.”
All this pushback may prompt changes. After the upcoming comment period closes in late November or early December, the working group could decide to revise the proposal and send it out for public consultation again. The entire revision process isn’t estimated to be completed until the end of 2027 at the earliest.
With wind and solar tax credits scheduled to sunset around then, voluntary action by companies will take on even greater importance in shaping the clean energy transition. While in theory, the Greenhouse Gas Protocol solely develops accounting rules and does not force companies to take any particular action, it’s undeniable that its decisions will set the stage for the next chapter of decarbonization. That chapter could either be about solving for round-the-clock clean power, or just trying to keep corporate clean energy investment flowing and growing, hopefully with higher integrity.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration seems to be pursuing a “some of the above” strategy with little to no internal logic.
The Department of Energy justified terminating hundreds of congressionally-mandated grants issued by the Biden administration for clean energy projects last week (including for a backup battery at a children’s hospital) by arguing that they were bad investments for the American people.
“Following a thorough, individualized financial review, DOE determined that these projects did not adequately advance the nation’s energy needs, were not economically viable, and would not provide a positive return on investment of taxpayer dollars,” the agency’s press release said.
It’s puzzling, then, that the Trump administration is pouring vast government resources into saving aging coal plants and expediting advanced nuclear projects — two sources of energy that are famously financial black holes.
The Energy Department announced it would invest $625 million to “reinvigorate and expand America’s coal industry” in late September. Earlier this year, the agency also made $900 million available to “unlock commercial deployment of American-made small modular reactors.”
It’s hard to imagine what economic yardsticks would warrant funding to keep coal plants open. The cost of operating a coal plant in the U.S. has increased by nearly 30% since 2021 — faster than inflation — according to research by Energy Innovation. Driving that increase is the cost of coal itself, as well as the fact that the nation’s coal plants are simply getting very old and more expensive to maintain. “You can put all the money you want into a clunker, but at the end of the day, it’s really old, and it’s just going to keep getting more expensive over time, even if you have a short term fix,” Michelle Solomon, a program manager at Energy Innovation who authored the research, told me.
Keeping these plants online — even if they only operate some of the time— inevitably raises electricity bills. That’s because in many of the country’s electricity markets, the cost of power on any given day is determined by the most expensive plant running. On a hot summer day when everyone’s air conditioners are working hard and the grid operator has to tell a coal plant to switch on to meet demand, every electron delivered in the region will suddenly cost the same as coal, even if it was generated essentially for free by the sun or wind.
The Trump administration has also based its support for coal plants on the idea that they are needed for reliability. In theory, coal generation should be available around the clock. But in reality, the plants aren’t necessarily up to the task — and not just because they’re old. Sandy Creek in Texas, which began operating in 2013 and is the newest coal plant in the country, experienced a major failure this past April and is now expected to stay offline until 2027, according to the region’s grid operator. In a report last year, the North American Electric Reliability Corporation warned that outage rates for coal plants are increasing. This is in part due to wear and tear from the way these plants cycle on and off to accommodate renewable energy sources, the report said, but it’s also due to reduced maintenance as plant operators plan to retire the facilities.
“You can do the deferred maintenance. It might keep the plant operating for a bit longer, but at the end of the day, it’s still not going to be the most efficient source of energy, or the cheapest source of energy,” Solomon said.
The contradictions snowball from there. On September 30, the DOE opened a $525 million funding opportunity for coal plants titled “Restoring Reliability: Coal Recommissioning and Modernization,” inviting coal-fired power plants that are scheduled for retirement before 2032 or in rural areas to apply for grants that will help keep them open. The grant paperwork states that grid capacity challenges “are especially acute in regions with constrained transmission and sustained load growth.” Two days later, however, as part of the agency’s mass termination of grants, it canceled more than $1.3 billion in awards from the Grid Deployment Office to upgrade and install new transmission lines to ease those constraints.
The new funding opportunity may ultimately just shuffle awards around from one coal plant to another, or put previously-awarded projects through the time-and-money-intensive process of reapplying for the same funding under a new name. Up to $350 million of the total will go to as many as five coal plants, with initial funding to restart closed plants or to modernize old ones, and later phases designated for carbon capture, utilization, and storage retrofits. The agency said it will use “unobligated” money from three programs that were part of the 2021 Infrastructure Investment and Jobs Act: the Carbon Capture Demonstration Projects Program, the Carbon Capture Large-Scale Pilot Projects, and the Energy Improvements in Rural or Remote Areas Program.
In a seeming act of cognitive dissonance, however, the agency has canceled awards for two coal-fired power plants that the Biden administration made under those same programs. One, a $6.5 million grant to Navajo Transitional Energy Company, a tribal-owned entity that owns a stake in New Mexico’s Four Corners Generating Station, would have funded a study to determine whether adding carbon capture and storage to the plant was economically viable. The other, a $50 million grant to TDA Research that would have helped the company validate its CCS technology at Dry Fork Station, a coal plant in Wyoming, was terminated in May.
Two more may be out the window. A new internal agency list of grants labeled “terminate” that circulated this week included an $8 million grant for the utility Duke Energy to evaluate the feasibility of capturing carbon from its Edwardsport plant in Indiana, and $350 million for Project Tundra, a carbon capture demonstration project at the Milton R. Young Station in North Dakota.
“It’s not internally consistent,” Jack Andreason Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “You’re canceling coal grants, but then you’re giving $630 million to keep them open. You’re also investing a ton of time and money into nuclear — which is great, to be clear — but these small modular reactors haven’t been deployed in the United States, and part of the reason is that they’re currently not economically viable.”
The closest any company has come thus far to deploying a small modular reactor in the U.S. is NuScale, a company that planned to build its first-of-a-kind reactors in Idaho and had secured agreements to sell the power to a group of public utilities in Utah. But between 2015, when it was first proposed, and late 2023, when it died, the project’s budget tripled from $3 billion to more than $9 billion, while its scale was reduced from 600 megawatts to 462 megawatts. Not all of that was inevitable — costs rose dramatically in the final few years due to inflation. The reason NuScale ultimately pulled out of the project is that the cost of electricity it generated was going to be too high for the market to bear.
It’s unclear how heavily the DOE will weigh project financials in the application process for the $900 million for nuclear reactors. In its funding announcement, it specified that the awards would be made “solely based on technical merit.” The agency’s official solicitation paperwork, however, names “financial viability” as one of the key review criteria. Regardless, the Trump administration appears to recognize the value in funding first-of-a-kind, risky technologies when it comes to nuclear, but is not applying the same standards to direct air capture or hydrogen plants.
I asked the Department of Energy to share the criteria it used in the project review process to determine economic viability. In response, spokesperson Ben Dietderich encouraged me to read Wright’s memorandum describing the review process from May. The memo outlines what types of documentation the agency will evaluate to reach a decision, but not the criteria for making that decision.
Solomon agreed that advanced nuclear might one day meet the grid’s growing power needs, but not anytime soon. “Hopefully in the long term, this technology does become a part of our electricity system. But certainly relying on it in the short term has real risks to electricity costs,” she said. “And also reliability, in the sense that the projects might not materialize.”
The collateral damage from the Lava Ridge wind project might now include a proposed 285-mile transmission line initially approved by federal regulators in the 1990s.
The same movement that got Trump to kill the Lava Ridge wind farm Trump killed has appeared to derail a longstanding transmission project that’s supposed to connect sought-after areas for wind energy in Idaho to power-hungry places out West.
The Southwest Intertie Project-North, also known as SWIP-N, is a proposed 285-mile transmission line initially approved by federal regulators in the 1990s. If built, SWIP-N is supposed to feed power from the wind-swept plains of southern Idaho to the Southwest, while shooting electrons – at least some generated from solar power – back up north into Idaho from Nevada, Utah, and Arizona. In California, regulators have identified the line as crucial for getting cleaner wind energy into the state’s grid to meet climate goals.
But on Tuesday, SWIP-N suddenly faced a major setback: The three-person commission representing Jerome County, Idaho – directly in the path of the project – voted to revoke its special use permit, stating the company still lacked proper documentation to meet the terms and conditions of the approval. SWIP-N had the wind at its back as recently as last year, when LS Power expected it to connect to Lava Ridge and other wind farms that have been delayed by Trump’s federal permitting freeze on renewable energy. But now, the transmission line has stuttered along with this potential generation.
At a hearing Tuesday evening, county commissioners said Great Basin Transmission, a subsidiary of LS Power developing the line, would now suddenly need new input, including the blessing of the local highway district and potential feedback from the Federal Aviation Administration. Jerome County Commissioner Charles Howell explained to me Wednesday afternoon that there will still need to be formal steps remanding the permit, and the process will go back to local zoning officials. Great Basin Transmission will then at minimum need to get the sign-offs from local highway officials to satisfy his concerns, as well as those of the other commissioner who voted to rescind the permit, Ben Crouch.
The permit was many years old, and there are outstanding questions about what will happen next procedurally, including what Great Basin Transmission is actually able to do to fight this choice by the commissioners. At minimum, staff for the commission will write a formal decision explaining the reasoning and remand the permit. After that, it’ll be up to Great Basin Transmission to produce the documents that commissioners want. “Even our attorney and staff didn’t have those answers when we asked that after the vote,” Howell said, adding that he hopes the issues can be resolved. “I was on the county commission about when they decided where to site the towers, where to site the right-of-ways. That’s all been there a long time.”
This is the part where I bring up how Jerome County’s decision followed a months-long fight by aggrieved residents who opposed the SWIP-N line, including homeowners who say they didn’t know their properties were in the path of the project. There’s also a significant anti-wind undercurrent, as many who are fighting this transmission line previously fought LS Power’s Lava Ridge wind project, which was blocked by and executive order from President Donald Trump on his first day in office. Jerome County itself passed an ordinance in May requiring any renewable energy facility to get all federal, state, and local approvals before it would sign off on new projects.
Opposition to SWIP-N comes from a similar place as the “Stop Lava Ridge” campaign. Along with viewshed anxieties and property value impacts, SWIP-N, like Lava Ridge, would be within single-digit miles of the Minidoka National Historic Site, a former prison camp that held Japanese-Americans during World War II. In the eyes of its staunchest critics, constructing the wind farm would’ve completely damaged any impact of visiting the site by filling the surroundings of what is otherwise a serene, somber scene. Descendants of Minidoka detainees lobbied politicians at all levels to oppose Lava Ridge, a cause that was ultimately championed by Republican politicians in their fight against the project.
These same descendants of Japanese-American detainees have fought the transmission line, arguing that its construction would inevitably lead to new wind projects. “If approved, the SWIP-N line would enable LS Power and other renewable energy companies to build massive wind projects on federal land in and around Jerome County in future years,” wrote Dan Sakura, the son of a Minidoka prisoner, in a September 15 letter to the commission.
Sakura had been a leading voice in the fight against Lava Ridge. When I asked why he was weighing in on SWIP-N, he told me over text message, “The Lava Ridge wind project poisoned the well for renewable energy projects on federal land in Southern Idaho.”
LS Power did not respond to a request for comment.
It’s worth noting that efforts have already been made to avoid SWIP-N’s impacts to the Minidoka National Historic Site. In 2010, Congress required the Interior Secretary to re-do the review process for the transmission line, which at the time was proposed to go through the historic site. The route rejected by Jerome County would go around.
There is also no guarantee that wind energy will flock to southern Idaho any time soon. Yes, there’s a Trump permitting freeze, and federal wind energy tax credits are winding down. That’s almost certainly why the developers of small nuclear reactors have reportedly coveted the Lava Ridge site for future projects. But there’s also incredible hostility pent up against wind partially driven by the now-defunct LS Power project, for instance in Lincoln County, where officials now have an emergency moratorium banning wind energy while they develop a more permanent restrictive ordinance.
Howell made no bones about his own views on wind farms, telling me he prefers battery storage and nuclear power. “As I stand here in my backyard, if they put up windmills, that’s all I’m going to see for 40 miles,” he said
But Howell did confess to me that he thinks SWIP-N will ultimately be built – if the company is able to get these new sign-offs. What kind of energy flows through a transmission line cannot ultimately affect the decision on the special use permit because, he said, “there are rules.” On top of that, Idaho is going to ultimately need more power no matter what, and at the very least, the state will have to get electrons from elsewhere.
Howell’s “non-political” answer to the fate of SWIP-N, as he put it to me, is that “We live on power, so we gotta have more power.”
The week’s most important news around renewable project fights.
1. Western Nevada — The Esmeralda 7 solar mega-project may be no more.
2. Washoe County, Nevada – Elsewhere in Nevada, the Greenlink North transmission line has been delayed by at least another month.
3. Oconto County, Wisconsin – Solar farm town halls are now sometimes getting too scary for developers to show up at.
4. Apache County, Arizona – In brighter news, this county looks like it will give its first-ever conditional use permit for a large solar farm, EDF Renewables’ Juniper Spring project.
5. Putnam County, Indiana – After hearing about what happened here this week, I’m fearful for any solar developer trying to work in Indiana.
6. Tippecanoe County, Indiana – Two counties to the north of Putnam is a test case for the impacts a backlash on solar energy can have on data centers.