You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

A year and a half ago, President Biden signed the Inflation Reduction Act, the biggest climate law in American history — and arguably in world history. The law will spend an estimated $500 billion in grants and tax credits to incentivize people and businesses to switch from burning fossil fuels to using cleaner, zero-carbon technologies.
That’s the goal, at least. But is the IRA actually working? Now, 18 months after its passage, we’re starting to be able to answer that question. A new report from a coalition of major energy analysts — including MIT, the Rhodium Group, and our cohost Jesse Jenkins’ lab at Princeton — looks at data from the power and transportation sectors and concludes that yes, the law is starting to decarbonize the American economy.
But it isn’t working in the way many people might expect, because while electric vehicles are on track to meet the IRA’s climate goals, the power sector is not.
That’s the opposite of what you might think from reading the popular press, which has bemoaned an alleged slowdown in new EV sales. But the new report finds that the transportation sector actually came in at the upper end of what modelers expected to see this year. About 9.2% of new cars sold last year in the United States were zero-emissions vehicles; after the IRA passed, modelers had expected EVs to come in anywhere from 8.1 to 9.4% of sales.
But the power sector is lagging behind what modelers had expected to see. While the three groups had projected that 46 to 79 gigawatts of new zero-carbon power would come online last year, only 32.3 gigawatts of new capacity actually did. That is primarily due to a drop in new onshore wind projects, which fell below the installation levels achieved in 2020 and 2021. While solar and batteries continued to go gangbusters, exceeding previous records, they could not make up for the drop in wind. That means that the power sector is not on track to cut emissions 40% by 2030, as compared to 2005 levels, as the bill’s supporters have hoped.
Jesse Jenkins, an energy systems expert and professor at Princeton University, and I dive into the details on the latest episode of Shift Key.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: First, let's do the moment of truth. Let’s just first get into the data. So in the power sector, what do we see?
Jesse Jenkins: What we see in the electricity sector is a new record set for zero carbon electricity generation and storage capacity additions. So that's new power plant and battery storage construction.
In aggregate, we saw over 32,000 megawatts or 32 gigawatts of new zero carbon generation and storage added to the U.S. grid in 2023. That's about a 32% increase from the rate in 2022. And it edges out a previous record that we saw in 2021 of about 31.6 gigawatts. So good news is we're setting new record growth rates in total in terms of wind and solar and battery additions.
Unfortunately, that does fall on the lower end of what we were projecting in most of the modeling results. We were looking for, on average, about 46 to 79 gigawatts, so call it 40 to 80 gigawatts on average of additions in 2023 and 2024. We fell short of the low end of that range at 32.3 gigawatts. So unless the pace accelerates substantially in 2024, we're probably going to fall a bit behind schedule in terms of capacity additions.
Meyer: And do we have a sense of what's driving that? Because I think that's a very surprising finding, that we're behind schedule in the power sector, where I think people feel pretty good generally about the pace of decarbonization. Or I think where the common wisdom, at least, is that the pace of decarbonization is like proceeding apace. What's driving this underperformance of the model?
Jenkins: So it's really the difference between solar and wind additions.
The solar sector added about 18.4 gigawatts of capacity in 2023. That's up massively from just about 11 gigawatts in 2022. It's about double what we had seen in 2020, which was kind of our reference when we were doing our modeling as we started the REPEAT project in 2021. And so that's looking encouraging and in fact is running ahead of schedule with the average pace of additions that we saw in REPEAT project results.
Batteries are growing way faster than we expected.
And that helps really make the most of those solar capacity additions because solar and batteries are kind of like peanut butter and jelly, they go together quite well. And that's because solar has this nice, regular daily fluctuation, right? From the sun rising and setting. And that pairs really well with batteries, which today in a way lithium ion batteries are best suited for, you know, only a few hours of storage. So they'll charge for three or four hours in the middle of the day when we've got an abundance of sun. And then they'll discharge in the evening to help meet the evening peak of demand when everybody's coming home from work.
The batteries basically helped shift the solar output from the middle of the day to hit that evening peak. And that's, that's really helpful. Where things are running behind schedule is really in the wind sector, where we only built about half of the peak rate, actually less than half that we've seen historically in 2023. Additions of wind power in 2023 were only about 6.3 gigawatts, and that's down from nearly 15 gigawatts in each of 2020 and 2021.
So that's a step backwards at a time when we should be smashing new record growth rates across all of these sectors. And that's giving me the biggest concern as we look at in the next couple of years.
Meyer: And that's, I mean, last show we talked about offshore wind and the troubles in offshore wind and how it seems like some big offshore wind projects that we thought might be coming online in the middle of this decade might not be coming online till the end of the decade. But when we talk about wind underperforming in terms of the whole country over the past year, we're really still talking about onshore wind. This is like big turbines in the middle of the Great Plains, not big turbines off the coast of New York, New Jersey, right?
Jenkins: That's right. Yeah, I think I don't think we had any significant offshore wind capacity additions coming in 2024. You know, most of that we were expecting would come in between 2026 and 2030 or 2035. So this is really a story about onshore wind, where if we look at the economics of onshore wind across the country, there's a tremendous number of sites that look very economic given the incentives provided by the Inflation Reduction Act.
And unfortunately, we're just not building out at the pace that would be economically justified. And that is really an indicator that there are a substantial number of other non-economic frictions or barriers to deployment of wind in particular at the pace that we want to see.
The full transcript is here.
This episode of Shift Key is sponsored by Advanced Energy United, KORE Power, and Yale …
Advanced Energy United educates, engages, and advocates for policies that allow our member companies to compete to power our economy with 100% clean energy, working with decision makers and energy market regulators to achieve this goal. Together, we are united in our mission to accelerate the transition to 100% clean energy in America. Learn more at advancedenergyunited.org/heatmap
KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com — the future of clean energy is here.
Build your skills in policy, finance, and clean technology at Yale. Yale’s Financing and Deploying Clean Energy certificate program is a 10-month online certificate program that trains and connects clean energy professionals to catalyze an equitable transition to a clean economy. Connect with Yale’s expertise, grow your professional network, and deepen your impact. Learn more at cbey.yale.edu/certificate.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob talks with McMaster University engineering professor Greig Mordue, then checks in with Heatmap contributor Andrew Moseman on the EVs to watch out for.
It’s been a huge few weeks for the electric vehicle industry — at least in North America.
After a major trade deal, Canada is set to import tens of thousands of new electric vehicles from China every year, and it could soon invite a Chinese automaker to build a domestic factory. General Motors has also already killed the Chevrolet Bolt, one of the most anticipated EV releases of 2026.
How big a deal is the China-Canada EV trade deal, really? Will we see BYD and Xiaomi cars in Toronto and Vancouver (and Detroit and Seattle) any time soon — or is the trade deal better for Western brands like Volkswagen or Tesla which have Chinese factories but a Canadian presence? On this week’s Shift Key, Rob talks to Greig Mordue, a former Toyota executive who is now an engineering professor at McMaster University in Hamilton, Ontario, about how the deal could shake out. Then he chats with Heatmap contributor Andrew Moseman about why the Bolt died — and the most exciting EVs we could see in 2026 anyway.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Over the weekend there was a new tariff threat from President Trump — he seems to like to do this on Saturday when there are no futures markets open — a new tariff threat on Canada. It is kind of interesting because he initially said that he thought if Canada could make a deal with China, they should, and he thought that was good. Then over the weekend, he said that it was actually bad that Canada had made some free trade, quote-unquote, deal with China.
Do you think that these tariff threats will affect any Carney actions going forward? Is this already priced in, slash is this exactly why Carney has reached out to China in the first place?
Greig Mordue: I think it all comes under the headline of “deep sigh,” and we’ll see where this goes. But for the first 12 months of the U.S. administration, and the threat of tariffs, and the pullback, and the new threat, and this going forward, the public policy or industrial policy response from the government of Canada and the province of Ontario, where automobiles are built in this country, was to tread lightly. And tread lightly, generally means do nothing, and by doing nothing stop the challenges.
And so doing nothing led to Stellantis shutting down an assembly plant in Brampton, Ontario; General Motors shutting an assembly plant in Ingersoll, Ontario; General Motors reducing a three-shift operation in Oshawa, Ontario to two shifts; and Ford ragging the puck — Canadian term — on the launch of a new product in their Oakville, Ontario plant. So doing nothing didn’t really help Canada from a public policy perspective.
So they’re moving forward on two fronts: One is the resetting of relationships with China and the hope of some production from Chinese manufacturers. And two, the promise of automotive industrial policy in February, or at some point this spring. So we’ll see where that goes — and that may cause some more restless nights from the U.S. administration. We’ll see.
Mentioned:
Canada’s new "strategic partnership” with China
The Chevy Bolt Is Already Dead. Again.
The EVs Everyone Will Be Talking About in 2026
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
A federal judge in Massachusetts ruled that construction on Vineyard Wind could proceed.
The Vineyard Wind offshore wind project can continue construction while the company’s lawsuit challenging the Trump administration’s stop work order proceeds, judge Brian E. Murphy for the District of Massachusetts ruled on Tuesday.
That makes four offshore wind farms that have now won preliminary injunctions against Trump’s freeze on the industry. Dominion Energy’s Coastal Virginia offshore wind project, Orsted’s Revolution Wind off the coast of New England, and Equinor’s Empire Wind near Long Island, New York, have all been allowed to proceed with construction while their individual legal challenges to the stop work order play out.
The Department of the Interior attempted to pause all offshore wind construction in December, citing unspecified “national security risks identified by the Department of War.” The risks are apparently detailed in a classified report, and have been shared neither with the public nor with the offshore wind companies.
Vineyard Wind, a joint development between Avangrid Renewables and Copenhagen Infrastructure Partners, has been under construction since 2021, and is already 95% built. More than that, it’s sending power to Massachusetts customers, and will produce enough electricity to power up to 400,000 homes once it’s complete.
In court filings, the developer argued it was urgent the stop work order be lifted, as it would lose access to a key construction boat required to complete the project on March 31. The company is in the process of replacing defective blades on its last handful of turbines — a defect that was discovered after one of the blades broke in 2024, scattering shards of fiberglass into the ocean. Leaving those turbine towers standing without being able to install new blades created a safety hazard, the company said.
“If construction is not completed by that date, the partially completed wind turbines will be left in an unsafe condition and Vineyard Wind will incur a series of financial consequences that it likely could not survive,” the company wrote. The Trump administration submitted a reply denying there was any risk.
The only remaining wind farm still affected by the December pause on construction is Sunrise Wind, a 924-megawatt project being developed by Orsted and set to deliver power to New York State. A hearing for an injunction on that order is scheduled for February 2.
Noon Energy just completed a successful demonstration of its reversible solid-oxide fuel cell.
Whatever you think of as the most important topic in energy right now — whether it’s electricity affordability, grid resilience, or deep decarbonization — long-duration energy storage will be essential to achieving it. While standard lithium-ion batteries are great for smoothing out the ups and downs of wind and solar generation over shorter periods, we’ll need systems that can store energy for days or even weeks to bridge prolonged shifts and fluctuations in weather patterns.
That’s why Form Energy made such a big splash. In 2021, the startup announced its plans to commercialize a 100-plus-hour iron-air battery that charges and discharges by converting iron into rust and back again. The company’s CEO, Mateo Jaramillo, told The Wall Street Journal at the time that this was the “kind of battery you need to fully retire thermal assets like coal and natural gas power plants.” Form went on to raise a $240 million Series D that same year, and is now deploying its very first commercial batteries in Minnesota.
But it’s not the only player in the rarified space of ultra-long-duration energy storage. While so far competitor Noon Energy has gotten less attention and less funding, it was also raising money four years ago — a more humble $3 million seed round, followed by a $28 million Series A in early 2023. Like Form, it’s targeting a price of $20 per kilowatt-hour for its electricity, often considered the threshold at which this type of storage becomes economically viable and materially valuable for the grid.
Last week, Noon announced that it had completed a successful demonstration of its 100-plus-hour carbon-oxygen battery, partially funded with a grant from the California Energy Commission, which charges by breaking down CO2 and discharges by recombining it using a technology known as a reversible solid-oxide fuel cell. The system has three main components: a power block that contains the fuel cell stack, a charge tank, and a discharge tank. During charging, clean electricity flows through the power block, converting carbon dioxide from the discharge tank into solid carbon that gets stored in the charge tank. During discharge, the system recombines stored carbon with oxygen from the air to generate electricity and reform carbon dioxide.
Importantly, Noon’s system is designed to scale up cost-effectively. That’s baked into its architecture, which separates the energy storage tanks from the power generating unit. That makes it simple to increase the total amount of electricity stored independent of the power output, i.e. the rate at which that energy is delivered.
Most other batteries, including lithium-ion and Form’s iron-air system, store energy inside the battery cells themselves. Those same cells also deliver power; thus, increasing the energy capacity of the system requires adding more battery cells, which increases power whether it’s needed or not. Because lithium-ion cells are costly, this makes scaling these systems for multi-day energy storage completely uneconomical.
In concept, Noon’s ability to independently scale energy capacity is “similar to pumped hydro storage or a flow battery,” Chris Graves, the startup’s CEO, told me. “But in our case, many times higher energy density than those — 50 times higher than a flow battery, even more so than pumped hydro.” It’s also significantly more energy dense than Form’s battery, he said, likely making it cheaper to ship and install (although the dirt cheap cost of Form’s materials could offset this advantage.)
Noon’s system would be the first grid-scale deployment of reversible solid-oxide fuel cells specifically for long-duration energy storage. While the technology is well understood, historically reversible fuel cells have struggled to operate consistently and reliably, suffering from low round trip efficiency — meaning that much of the energy used to charge the battery is lost before it’s used — and high overall costs. Graves conceded Noon has implemented a “really unique twist” on this tech that’s allowed it to overcome these barriers and move toward commercialization, but that was as much as he would reveal.
Last week’s demonstration, however, is a big step toward validating this approach. “They’re one of the first ones to get to this stage,” Alexander Hogeveen Rutter, a manager at the climate tech accelerator Third Derivative, told me. “There’s certainly many other companies that are working on a variance of this,” he said, referring to reversible fuel cell systems overall. But none have done this much to show that the technology can be viable for long-duration storage.
One of Noon’s initial target markets is — surprise, surprise — data centers, where Graves said its system will complement lithium-ion batteries. “Lithium ion is very good for peak hours and fast response times, and our system is complementary in that it handles the bulk of the energy capacity,” Graves explained, saying that Noon could provide up to 98% of a system’s total energy storage needs, with lithium-ion delivering shorter streams of high power.
Graves expects that initial commercial deployments — projected to come online as soon as next year — will be behind-the-meter, meaning data centers or other large loads will draw power directly from Noon’s batteries rather than the grid. That stands in contrast to Form’s approach, which is building projects in tandem with utilities such as Great River Energy in Minnesota and PG&E in California.
Hogeveen Rutter, of Third Derivative, called Noon’s strategy “super logical” given the lengthy grid interconnection queue as well as the recent order from the Federal Energy Regulatory Commission intended to make it easier for data centers to co-locate with power plants. Essentially, he told me, FERC demanded a loosening of the reins. “If you’re a data center or any large load, you can go build whatever you want, and if you just don’t connect to the grid, that’s fine,” Hogeveen Rutter said. “Just don’t bother us, and we won’t bother you.”
Building behind-the-meter also solves a key challenge for ultra-long-duration storage — the fact that in most regions, renewables comprise too small a share of the grid to make long-duration energy storage critical for the system’s resilience. Because fossil fuels still meet the majority of the U.S.’s electricity needs, grids can typically handle a few days without sun or wind. In a world where renewables play a larger role, long-duration storage would be critical to bridging those gaps — we’re just not there yet. But when a battery is paired with an off-grid wind or solar plant, that effectively creates a microgrid with 100% renewables penetration, providing a raison d’être for the long-duration storage system.
“Utility costs are going up often because of transmission and distribution costs — mainly distribution — and there’s a crossover point where it becomes cheaper to just tell the utility to go pound sand and build your power plant,” Richard Swanson, the founder of SunPower and an independent board observer at Noon, told me. Data centers in some geographies might have already reached that juncture. “So I think you’re simply going to see it slowly become cost effective to self generate bigger and bigger sizes in more and more applications and in more and more locations over time.”
As renewables penetration on the grid rises and long-duration storage becomes an increasing necessity, Swanson expects we’ll see more batteries like Noon’s getting grid connected, where they’ll help to increase the grid’s capacity factor without the need to build more poles and wires. “We’re really talking about something that’s going to happen over the next century,” he told me.
Noon’s initial demo has been operational for months, cycling for thousands of hours and achieving discharge durations of over 200 hours. The company is now fundraising for its Series B round, while a larger demo, already built and backed by another California Energy Commission grant, is set to come online soon.
While Graves would not reveal the size of the pilot that’s wrapping up now, this subsequent demo is set to deliver up to 100 kilowatts of power at once while storing 10 megawatt-hours of energy, enough to operate at full power for 100 hours. Noon’s full-scale commercial system is designed to deliver the same 100-hour discharge duration while increasing the power output to 300 kilowatts and the energy storage capacity to 30 megawatt-hours.
This standard commercial-scale unit will be shipping container-sized, making it simple to add capacity by deploying additional modules. Noon says it already has a large customer pipeline, though these agreements have yet to be announced. Those deals should come to light soon though, as Swanson says this technology represents the “missing link” for achieving full decarbonization of the electricity sector.
Or as Hogeveen Rutter put it, “When people talk about, I’m gonna get rid of all my fossil fuels by 2030 or 2035 — like the United Kingdom and California — well this is what you need to do that.”