Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Why a Climate Startup Is Building the World’s Biggest Airplane

Inside episode nine of Shift Key.

A Radia Windrunner.
Heatmap Illustration/Radia

Radia is a $1 billion climate tech startup with an unusual pitch: It is trying to build the world’s largest airplane. Its proposed aircraft, the Radia Wind Runner, would be as long as a football field, nearly as wide as a New York city block, and capable of carrying 12 times the volume of a Boeing 747. Such a plane could ferry massive wind-turbine blades, unlocking what the company calls “gigawind” — the ability to build offshore-sized wind turbines on land.

Why is that important? Because the larger the wind turbine, the more electricity that it generates — and the less wind it needs to work with. Radia says that its “gigawind” farms could profitably go into places with slower wind speeds, such as the Northeast or Mississippi Delta. They could also be built in the existing Wind Belt, potentially doubling current output.

In this week’s episode, Rob and Jesse talk to Radia’s chief executive officer, Mark Lundstrom. (Jesse’s consulting firm did some research for Radia while it was in stealth mode, in 2020 and 2023.) We discuss why the world needs a bigger plane, how such a new aircraft gets licensed, and why massive wind turbines could be such a big deal for renewable electricity. Shift Key is hosted by Robinson Meyer, executive editor of Heatmap, and Jesse Jenkins, a Princeton professor of energy systems engineering.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Jesse Jenkins: I’m here in the mechanical and aerospace engineering department at Princeton, so we’ve got a lot of students excited about new aerospace applications. I have a six-year-old kid, as well, and he’s also excited about anything that goes fast and is big, so I’m sure he’ll get excited about the eventual Lego kit for the WindRunner that we’ll have to get out in the world. But talk through the size of this aircraft compared to, say, something we’re used to, like a 737 or more conventional aircraft.

Mark Lundstrom: Sure. So before understanding the size, one has to understand the fundamental mission requirements. And so the goal, Radia’s goal is to be able to move up to a 105 meter long object that could weigh up to 75 tons. Now we can also move multiple smaller blades, so two 95s, or three 85s, or four 75s. So the vehicle is quite versatile.

In terms of sheer size, it’s about 12 times the volume of a 747. So it’s very, very large compared to the 747. It’s about nine times the volume of the Antonovs. And yet what's very different about it —

Jenkins: And the Antonov, that’s the largest plane built to date, right?

Lundstrom: Yes, the largest volumetric plane right now. There’s about 14 or 15 of them left in the world, usually Russian or Ukrainian operated.

Robinson Meyer: I was going to say, I remember the biggest plane in the world being destroyed right at the beginning of the Ukraine War and was wondering how that compared to the to the WindRunner vehicle.

Lundstrom: So the Antonov 225, there was one of them. WindRunner is six times bigger in volume than that airplane was, and it’s nine times bigger in volume than the remaining Antonov 124s that are still out there. And so, and what’s additionally unusual about it, in addition to the size, is its ability to land on dirt.

Meyer: Wow.

Lundstrom: Things like Antonovs, 747s, etc., they need to land on about 9,000 feet of steel reinforced concrete, typically. And we designed the WindRunners so we could land on relatively short dirt strips, so just over a mile of a semi-prepared field. And that allows us to bring the payload into a wind farm, and be able to get a very large aircraft out of the wind farm. It’s probably the first time that an aircraft has been designed to optimize around volume, as opposed to mass.

Usually when an aircraft design team starts off, they’ll start off thinking about how much mass has to be moved. We really started off thinking about how much volume has to be moved. So there are aircraft that move larger mass than the WindRunner. There’s absolutely no aircraft that comes close to moving larger volumes and being able to land that volume on a relatively short dirt strip.

This episode of Shift Key is sponsored by…

Advanced Energy United educates, engages, and advocates for policies that allow our member companies to compete to power our economy with 100% clean energy, working with decision makers and energy market regulators to achieve this goal. Together, we are united in our mission to accelerate the transition to 100% clean energy in America. Learn more at advancedenergyunited.org/heatmap

KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com.

Music for Shift Key is by Adam Kromelow.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

The Rare Earth Shopping Spree

On aluminum smelting, Korean nuclear, and a geoengineering database

Mining.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern may have caused up to $115 billion in economic losses and triggered the longest stretch of subzero temperatures in New York City’s history • Temperatures across the American South plunged up to 30 degrees Fahrenheit below historical averages • South Africa’s Northern Cape is roasting in temperatures as high as 104 degrees.


Keep reading...Show less
Green
Energy

The Grid Survived The Storm. Now Comes The Cold.

With historic lows projected for the next two weeks — and more snow potentially on the way — the big strain may be yet to come.

Storm effects.
Heatmap Illustration/Getty Images

Winter Storm Fern made the final stand of its 2,300-mile arc across the United States on Monday as it finished dumping 17 inches of “light, fluffy” snow over parts of Maine. In its wake, the storm has left hundreds of thousands without power, killed more than a dozen people, and driven temperatures to historic lows.

The grid largely held up over the weekend, but the bigger challenge may still be to come. That’s because prolonged low temperatures are forecasted across much of the country this week and next, piling strain onto heating and electricity systems already operating at or close to their limits.

Keep reading...Show less
Blue
AM Briefing

White Out

On deep-sea mining, New York nuclear, and kestrel symbiosis

Icy power lines.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern buried broad swaths of the country, from Oklahoma City to Boston • Intense flooding in Zimbabwe and Mozambique have killed more than 100 people • South Australia’s heat wave is raging on, raising temperatures as high as 113 degrees Fahrenheit.


THE TOP FIVE

1. America’s big snow storm buckles the grid, leaving 1 million without power

The United States’ aging grid infrastructure faces a test every time the weather intensifies, whether that’s heat domes, hurricanes, or snow storms. The good news is that pipeline winterization efforts that followed the deadly blackouts in 2021’s Winter Storm Uri made some progress in keeping everything running in the cold. The bad news is that nearly a million American households still lost power amid the storm. Tennessee, Mississippi, and Louisiana were the worst hit, with hundreds of thousands of households left in the dark, according to live data on the Power Outage tracker website. Georgia and Texas followed close behind, with roughly 75,000 customers facing blackouts. Kentucky had the next-most outages, with more than 50,000 households disconnected from the grid, followed by South Carolina, West Virginia, North Carolina, Virginia, and Alabama. Given the prevalence of electric heating in the typically-warmer Southeast, the outages risked leaving the blackout region without heat. Gas wasn’t entirely reliable, however. The deep freeze in Texas halted operations at roughly 10% of the Gulf Coast’s petrochemical facilities and refineries, Bloomberg reported.

Keep reading...Show less
Blue