Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Ford’s Model T Moment Isn’t About the Car

The assembly line is the company’s signature innovation. Now it’s trying to one-up itself with the Universal EV Production System.

A pickup truck and a diagram.
Heatmap Illustration/Getty Images

In 2027, Ford says, it will deliver a $30,000 mid-size all-electric truck. That alone would be a breakthrough in a segment where EVs have struggled against high costs and lagging interest from buyers.

But the company’s big announcement on Monday isn’t (just) about the truck. The promised pickup is part of Ford’s big plan that it has pegged as a “Model T moment” for electric vehicles. The Detroit giant says it is about to reimagine the entire way it builds EVs to cut costs, turn around its struggling EV division, and truly compete with the likes of Tesla.

What lies beneath the new affordable truck — which will revive the retro name Ford Ranchero, if rumors are true — is a new setup called the Ford Universal EV Platform. When car companies talk about a platform, they mean the automotive guts that can be shared between various models, a strategy that cuts costs compared to building everything from scratch for each vehicle. Tesla’s Model 3 and Model Y ride on the same platform, the latter being essentially a taller version of the former. Ford’s rival, General Motors, created the Ultium platform that has allowed it to build better and more affordable EVs like the Chevy Equinox and the upcoming revival of the Bolt. In Ford’s case, it says a truck, a van, a three-row SUV, and a small crossover can share the modular platform.

At the heart of the company’s plan, however, is a new manufacturing approach. The innovation of the original Model T was about the factory, after all — using the assembly line to cut production costs and lower the price of the car. For this “Model T moment,” the company has proposed a sea change in the way it builds EVs called the Ford Universal EV Production System. It will demonstrate the strategy with a $2 billion upgrade to the Ford factory in Louisville, Kentucky, that will build the new pickup.

In brief, Ford has embraced the more minimalist, software-driven version of car design embraced by EV-only companies like Tesla and Rivian. The vehicles themselves are mechanically simpler, with fewer buttons and parts, and more functions are controlled by software through touchscreen interfaces. Building cars this way cuts costs because you need far fewer bits, bobs, fasteners, and workstations in the factory. It also reduces the amount of wiring in the vehicle — by more than a kilometer of the stuff compared to the Mustang Mach-E, Ford’s current most popular EV, the company said.

Ford is in dire need of an electric turnaround. The company got into the EV race earlier than legacy car companies like Toyota and Subaru, which settled on more of a wait-and-see approach. Its Mustang Mach-E crossover has been one of the more successful non-Tesla EVs of the early 2020s; the F-150 Lightning proved that the full-size pickup truck that dominates American car sales could go electric, too.

But both vehicles were expensive to make, and the Lightning struggled to make a dent in the truck market, in part because the huge battery needed to power such a big vehicle gave it a bloated price. When Tesla started a price war in the EV market a few years ago, Ford began hemorrhaging billions from its electric division, struggling to adapt to the new world even as carmakers like GM and Hyundai/Kia found their footing.

The big Detroit brand has been looking for an answer ever since, and Monday’s announcement is the most promising proposal it has put forward. Part of the production scheme is for Ford to build its own line of next-gen lithium-ion phosphate, or LFP batteries in Michigan, using technology licensed from the Chinese giant CATL. Another step is to employ the “assembly tree,” which splits the traditional assembly line into three parallel operations, which Ford says reduces the number of required workstations and cuts assembly time by 15%.

Affordability has always been a bugaboo for the American EV industry, a worry exacerbated by the upcoming demise of the $7,500 tax credit. And while Ford’s manufacturing overhaul will go a long way toward building a light-duty pickup EV that sells for $30,000, so too will a fundamental change in thinking about batteries, weight, and range. The F-150 Lightning isn’t the only pickup with a big battery and an even bigger price. That truck’s power pack comes in at 98 kilowatt-hours; large EV pickups like the Rivian R1T and Chevy Silverado EV have 150 or even 200 kilowatt-hour batteries, necessary to store enough power to give these heavy beasts a decent driving range.

InsideEVs reports, however, that the affordable Ford truck may have a battery capacity of just over 50 kilowatt-hours, which would dramatically reduce its cost to make. The trade-off, then, is range. The Slate small pickup truck that made waves this year for its promised price in the $20,000s would have just 150 miles of range in its cheapest form. Ford hasn’t released any specs for its small EV truck, but even using state-of-the-art LFP chemistry, such a small battery surely won’t deliver many more miles per charge.

Whatever the final product looks like, the new Ford truck and the infrastructure behind it are another reminder that, no matter the headwinds caused by the Trump administration, EVs are the future. Ford had been humming along through its EV struggles because its gas-burning cars remained so popular in America, and so profitable. But those profits collapsed in the first half of 2025, according to The New York Times. Meanwhile, Ford and every other carmaker are struggling to catch up to the Chinese companies selling a plethora of cheap EVs all over the world. Their very future depends on innovating ways to build EVs for less.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

The Grid Survived The Storm. Now Comes The Cold.

With historic lows projected for the next two weeks — and more snow potentially on the way — the big strain may be yet to come.

Storm effects.
Heatmap Illustration/Getty Images

Winter Storm Fern made the final stand of its 2,300-mile arc across the United States on Monday as it finished dumping 17 inches of “light, fluffy” snow over parts of Maine. In its wake, the storm has left hundreds of thousands without power, killed more than a dozen people, and driven temperatures to historic lows.

The grid largely held up over the weekend, but the bigger challenge may still be to come. That’s because prolonged low temperatures are forecasted across much of the country this week and next, piling strain onto heating and electricity systems already operating at or close to their limits.

Keep reading...Show less
Blue
AM Briefing

White Out

On deep-sea mining, New York nuclear, and kestrel symbiosis

Icy power lines.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern buried broad swaths of the country, from Oklahoma City to Boston • Intense flooding in Zimbabwe and Mozambique have killed more than 100 people • South Australia’s heat wave is raging on, raising temperatures as high as 113 degrees Fahrenheit.


THE TOP FIVE

1. America’s big snow storm buckles the grid, leaving 1 million without power

The United States’ aging grid infrastructure faces a test every time the weather intensifies, whether that’s heat domes, hurricanes, or snow storms. The good news is that pipeline winterization efforts that followed the deadly blackouts in 2021’s Winter Storm Uri made some progress in keeping everything running in the cold. The bad news is that nearly a million American households still lost power amid the storm. Tennessee, Mississippi, and Louisiana were the worst hit, with hundreds of thousands of households left in the dark, according to live data on the Power Outage tracker website. Georgia and Texas followed close behind, with roughly 75,000 customers facing blackouts. Kentucky had the next-most outages, with more than 50,000 households disconnected from the grid, followed by South Carolina, West Virginia, North Carolina, Virginia, and Alabama. Given the prevalence of electric heating in the typically-warmer Southeast, the outages risked leaving the blackout region without heat. Gas wasn’t entirely reliable, however. The deep freeze in Texas halted operations at roughly 10% of the Gulf Coast’s petrochemical facilities and refineries, Bloomberg reported.

Keep reading...Show less
Blue
Climate

Climate Change Won’t Make Winter Storms Less Deadly

In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.

A snowflake with a tombstone.
Heatmap Illustration/Getty Images

The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.

But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.

Keep reading...Show less
Blue