Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

Biden’s Big Bet on Aluminum

Climate policy is once again intertwined with industrial policy.

Green aluminum.
Heatmap Illustration/Getty Images

Famously energy intensive and dominated by Chinese smelters, aluminum sits at a curious nexus of climate and industrial policy.

The famously lightweight metal is something like the base metal of green industry. It’s used in the frames for solar panels, the control equipment for wind turbines, and in the hardware of electricity distribution. It’s lighter than steel, which makes it appealing to electric car manufacturers, like Tesla, who want to expand the range of their vehicles. Aluminum is often found in the batteries themselves, as well, specifically their enclosures. Overall, aluminum demand is projected to rise by some 40% by the end of the decade.

Like other industrial metals (namely steel), the U.S. aluminum industry has been a poster child of deindustrialization. Employment in the aluminum production industry has fallen from around 100,000 in 2000 to around 60,000 in 2022, with much of the fall happening in the few years after the United States established permanent normal trade relations with China. Earlier this year, the second largest smelter in the country said it would lay off most of its employees.

So, can the Biden administration bring aluminum smelting back to the United States?

The Department of Energy today announced $6 billion of funding for 33 industrial decarbonization projects, including four for aluminum, worth almost $670 million total. That includes up to $500 million for Century Aluminum to build a new primary smelter, which would make it the first new smelter in the United States since the late 1970s.

“Aluminum is a metal that is of incredible strategic importance to the U.S. and the world,” Jane Flegal, the former White House Senior Director for Industrial Emissions, told me. “We used to do a lot of aluminum production. That has declined precipitously.”

Obama, Trump and Biden have tried some combination of tariffs and negotiations to bring order to the global aluminum market — some of the Trump-era tariffs remain in place — but none of them had much success. Traditional climate policy, meanwhile, has focused more on the greenhouse gas emissions that come from transportation and electricity generation.

Heavy industry is a massive source of emissions, comprising about a fifth of the global total. The aluminum industry on its own makes up about 2% of global emissions, of which the smelting is responsible for about 80%, with the lion’s share going to the electricity being used to power the process. This makes smelting especially sensitive to both the price and availability of power. It’s no coincidence that Iceland, with its plentiful and always available hydropower and geothermal resources, is a major aluminum producer.

Many industrial processes themselves also produce emissions, which makes industrial decarbonization not just an adjunct of decarbonizing the electricity sector but rather an area that requires its own technological breakthroughs. For example, to make aluminum out of alumina, a powder that is refined from bauxite, requires consuming a carbon anode, which itself is made from an oil refining byproduct. These are businesses that operate on small margins and require huge capital investments to expand or change production, Flegal told me.

And the new technology necessary to decarbonize them wasn't being developed because “there wasn’t the level of investment in new technological pathways,” Todd Tucker, director of industrial policy and trade at the Roosevelt Institute, told me. “These demonstration projects are the first step of showing viability of new production methods.”

The Department of Energy said the smelter “would double the size of the current U.S. primary aluminum industry while avoiding an estimated 75% of emissions from a traditional smelter.” The DOE noted the preferred site for the smelter would be “Kentucky or Ohio/Mississippi River Basins.” Kentucky’s Governor Andy Beshear said Monday that Century had indicated an interest in the Bluegrass State, and that his office was working to put together a bundle of incentives to make the state more attractive.

Wherever it’s located, the facility is expected to create more than 1,000 permanent jobs, Century and the Department of Energy said, which would go to members of the United Steelworkers union. The USW has recently endorsed President Biden and applauded the DOE program.

The decades of job losses in the aluminum sector have “been devastating for our members and communities we work at,” Emil Ramirez, the USW’s vice president for administration, told me. “We have to give the Biden administration credit for recognizing the need to revitalize this important industry.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Economy

Climate Change Is Already Costing U.S. Households Up to $900 Per Year

A new working paper from a trio of eminent economists tallies the effects of warming — particularly extreme weather — on Americans’ budgets.

Storms and money.
Heatmap Illustration/Getty Images

Attempts to quantify the costs of climate change often end up as philosophical exercises in forecasting and quantifying the future. Such projects involve (at least) two difficult tasks: establishing what is the current climate “pathway” we’re on, which means projecting hard-to-predict phenomena such as future policy actions and potential climate system feedbacks; and then deciding how to value the wellbeing of those people who will be born in the decades — or centuries — to come versus those who are alive today.

But what about the climate impacts we’re paying for right now? That’s the question explored in a working paper by former Treasury Department officials Kimberley Clausing, an economist at the University of California, Los Angeles, and Catherine Wolfram, an economist at the Massachusetts Institute of Technology, along with Wolfram’s MIT colleague Christopher Knittel.

Keep reading...Show less
Blue
AM Briefing

PJM WTF

On NYPA nuclear staffing, Zillow listings, and European wood

A data center.
Heatmap Illustration/Getty Images

Current conditions: A cluster of storms from Sri Lanka to Southeast Asia triggered floods that have killed more than 900 so far • A snowstorm stretching 1,200 miles across the northern United States blanketed parts of Iowa, Illinois, and South Dakota with the white stuff • In China, 31 weather stations broke records for heat on Sunday.


THE TOP FIVE

1. Watchdog warns against new data centers in the nation’s largest grid system

The in-house market monitor at the PJM Interconnection filed a complaint last week to the Federal Energy Regulatory Commission urging the agency to ban the nation’s largest grid operator from connecting any new data centers that the system can’t reliably serve. The warning from the PJM ombudsman comes as the grid operator is considering proposals to require blackouts during periods when there’s not enough electricity to meet data centers’ needs. The grid operator’s membership voted last month on a way forward, but no potential solution garnered enough votes to succeed, Heatmap’s Matthew Zeitlin wrote. “That result is not consistent with the basic responsibility of PJM to maintain a reliable grid and is therefore not just and reasonable,” Monitoring Analytics said, according to Utility Dive.

Keep reading...Show less
Red
Ideas

A Backup Plan for the AI Boom

If it turns out to be a bubble, billions of dollars of energy assets will be on the line.

Popping the AI bubble.
Heatmap Illustration/Getty Images

The data center investment boom has already transformed the American economy. It is now poised to transform the American energy system.

Hyperscalers — including tech giants such as Microsoft and Meta, as well as leaders in artificial intelligence like OpenAI and CoreWeave — are investing eyewatering amounts of capital into developing new energy resources to feed their power-hungry data infrastructure. Those data centers are already straining the existing energy grid, prompting widespread political anxiety over an energy supply crisis and a ratepayer affordability shock. Nothing in recent memory has thrown policymakers’ decades-long underinvestment in the health of our energy grid into such stark relief. The commercial potential of next-generation energy technologies such as advanced nuclear, batteries, and grid-enhancing applications now hinge on the speed and scale of the AI buildout.

Keep reading...Show less
Blue