Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Shift Key Summer School: How Sun and Wind Become Electricity

Jesse teaches Rob all about where solar and wind energy come from.

Early solar panels.
Heatmap Illustration/Getty Images

The two fastest-growing sources of electricity generation in the world represent a radical break with the energy technologies that came before them. That’s not just because their fuels are the wind and the sun.

This is our third episode of Shift Key Summer School, a series of “lecture conversations” about the basics of energy, electricity, and the power grid. This week, we dive into the history and mechanics of wind turbines and solar panels, the two lynchpin technologies of the energy transition. What do solar panels have in common with semiconductors? Why did it take so long for them to achieve scale? And what’s an inverter and why is it so important for the grid of the future?

Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Jesse Jenkins: And so then the other thing, of course, that helps is putting it at a place that’s sunnier, right? In addition to pointing it at the sun, you need to have the sun in the first place. If you go from a cloudy northern latitude to a sunny southern latitude, you’re going to get more production. That variation isn’t as large as you might think, though, from the best site in, say, Arizona and New Mexico to the worst 10th percentile sites in northern Maine or Portland, Oregon, where I grew up, where it’s very cloudy. That difference in solar resource potential is only about a factor of two. So I get about twice as much solar output from an ideally placed panel in Arizona as I do in Portland, Oregon, or Portland, Maine. That’s a lot, but we can find much better resources much closer to Portland, Maine, and Portland, Oregon, right?

And so this is why it doesn’t really make sense to build a giant solar farm in Arizona and then send all that power everywhere else in the country — because the transmission lines are so expensive and the efficiency gain is not that huge, it doesn’t make sense to send power that far away. It might make sense to put my solar panel on the east side of the Cascade Mountains and send them to Portland, Oregon, but not to go all the way to Arizona. Because the variation in solar potential is much more gradual across different locations and doesn’t span quite as much of a range as wind power, which we can talk about.

Robinson Meyer: I was going to say, this idea that solar only varies by, it sounds like, about 100% in its efficiency.

Jenkins: Or capacity factor.

Meyer: Yeah. I suspect, in fact, from previous conversations that this is going to be an important tool that comes back later — this idea that solar only really varies by 100% in its resource potential, that Arizona solar is only twice as good as Maine solar, is going to be really important after we talk about wind.

Mentioned:

How Solar Energy Became Cheap, by Gregory F. Nemet

More on what wind energy has to do with Star Trek

This episode of Shift Key is sponsored by …

Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

Why EV-Makers Are Suddenly Obsessed With Wires

Batteries can only get so small so fast. But there’s more than one way to get weight out of an electric car.

A Rivian having its wires pulled out.
Heatmap Illustration/Rivian, Getty Images

Batteries are the bugaboo. We know that. Electric cars are, at some level, just giant batteries on wheels, and building those big units cheaply enough is the key to making EVs truly cost-competitive with fossil fuel-burning trucks and cars and SUVs.

But that isn’t the end of the story. As automakers struggle to lower the cost to build their vehicles amid a turbulent time for EVs in America, they’re looking for any way to shave off a little expense. The target of late? Plain old wires.

Keep reading...Show less
Blue
Adaptation

How to Save Ski Season

Europeans have been “snow farming” for ages. Now the U.S. is finally starting to catch on.

A snow plow and skiing.
Heatmap Illustration/Getty Images

February 2015 was the snowiest month in Boston’s history. Over 28 days, the city received a debilitating 64.8 inches of snow; plows ran around the clock, eventually covering a distance equivalent to “almost 12 trips around the Equator.” Much of that plowed snow ended up in the city’s Seaport District, piled into a massive 75-foot-tall mountain that didn’t melt until July.

The Seaport District slush pile was one of 11 such “snow farms” established around Boston that winter, a cutesy term for a place that is essentially a dumpsite for snow plows. But though Bostonians reviled the pile — “Our nightmare is finally over!” the Massachusetts governor tweeted once it melted, an event that occasioned multiple headlines — the science behind snow farming might be the key to the continuation of the Winter Olympics in a warming world.

Keep reading...Show less
Yellow
AM Briefing

New York Quits

On microreactor milestones, the Colorado River, and ‘crazy’ Europe

Wind turbines.
Heatmap Illustration/Getty Images

Current conditions: A train of three storms is set to pummel Southern California with flooding rain and up to 9 inches mountain snow • Cyclone Gezani just killed at least four people in Mozambique after leaving close to 60 dead in Madagascar • Temperatures in the southern Indian state of Kerala are on track to eclipse 100 degrees Fahrenheit.


THE TOP FIVE

1. New York abandons its fifth offshore wind solicitation

What a difference two years makes. In April 2024, New York announced plans to open a fifth offshore wind solicitation, this time with a faster timeline and $200 million from the state to support the establishment of a turbine supply chain. Seven months later, at least four developers, including Germany’s RWE and the Danish wind giant Orsted, submitted bids. But as the Trump administration launched a war against offshore wind, developers withdrew their bids. On Friday, Albany formally canceled the auction. In a statement, the state government said the reversal was due to “federal actions disrupting the offshore wind market and instilling significant uncertainty into offshore wind project development.” That doesn’t mean offshore wind is kaput. As I wrote last week, Orsted’s projects are back on track after its most recent court victory against the White House’s stop-work orders. Equinor's Empire Wind, as Heatmap’s Jael Holzman wrote last month, is cruising to completion. If numbers developers shared with Canary Media are to be believed, the few offshore wind turbines already spinning on the East Coast actually churned out power more than half the time during the recent cold snap, reaching capacity factors typically associated with natural gas plants. That would be a big success. But that success may need the political winds to shift before it can be translated into more projects.

Keep reading...Show less
Blue