Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Shift Key Summer School: How Sun and Wind Become Electricity

Jesse teaches Rob all about where solar and wind energy come from.

Early solar panels.
Heatmap Illustration/Getty Images

The two fastest-growing sources of electricity generation in the world represent a radical break with the energy technologies that came before them. That’s not just because their fuels are the wind and the sun.

This is our third episode of Shift Key Summer School, a series of “lecture conversations” about the basics of energy, electricity, and the power grid. This week, we dive into the history and mechanics of wind turbines and solar panels, the two lynchpin technologies of the energy transition. What do solar panels have in common with semiconductors? Why did it take so long for them to achieve scale? And what’s an inverter and why is it so important for the grid of the future?

Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Jesse Jenkins: And so then the other thing, of course, that helps is putting it at a place that’s sunnier, right? In addition to pointing it at the sun, you need to have the sun in the first place. If you go from a cloudy northern latitude to a sunny southern latitude, you’re going to get more production. That variation isn’t as large as you might think, though, from the best site in, say, Arizona and New Mexico to the worst 10th percentile sites in northern Maine or Portland, Oregon, where I grew up, where it’s very cloudy. That difference in solar resource potential is only about a factor of two. So I get about twice as much solar output from an ideally placed panel in Arizona as I do in Portland, Oregon, or Portland, Maine. That’s a lot, but we can find much better resources much closer to Portland, Maine, and Portland, Oregon, right?

And so this is why it doesn’t really make sense to build a giant solar farm in Arizona and then send all that power everywhere else in the country — because the transmission lines are so expensive and the efficiency gain is not that huge, it doesn’t make sense to send power that far away. It might make sense to put my solar panel on the east side of the Cascade Mountains and send them to Portland, Oregon, but not to go all the way to Arizona. Because the variation in solar potential is much more gradual across different locations and doesn’t span quite as much of a range as wind power, which we can talk about.

Robinson Meyer: I was going to say, this idea that solar only varies by, it sounds like, about 100% in its efficiency.

Jenkins: Or capacity factor.

Meyer: Yeah. I suspect, in fact, from previous conversations that this is going to be an important tool that comes back later — this idea that solar only really varies by 100% in its resource potential, that Arizona solar is only twice as good as Maine solar, is going to be really important after we talk about wind.

Mentioned:

How Solar Energy Became Cheap, by Gregory F. Nemet

More on what wind energy has to do with Star Trek

This episode of Shift Key is sponsored by …

Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Podcast

Shift Key Classic: California’s Rooftop Solar Question

A blast from the past with the director of the Energy Policy Institute at the University of California, Berkeley’s Haas School of Business, Severin Borenstein.

Solar panel installers.
Heatmap Illustration/Getty Images

Shift Key is off for the holidays, but we hope you’ll enjoy this classic episode.

Rooftop solar is four times more expensive in America than it is in other countries. It’s also good for the climate. Should we even care about its high cost?

Keep reading...Show less
Yellow
Jael's touring van.
Heatmap Illustration/Getty Images

I expected touring the whole country with my rock band could change me. I didn’t think it would shatter my understanding of the U.S. energy transition.

First, a quick word about myself for any Heatmap readers who may not know: Along with delivering you scoop after scoop, I’ve been writing and playing music as the front person of a band called Ekko Astral. Last fall, we had the privilege of touring the entire U.S. opening for two of my favorite rock acts, PUP and Jeff Rosenstock. The tour itself was immensely successful, with packed-out rooms full of thousands of screaming fans. Getting to play those stages was the culmination of a dream I’d had since playing guitar at age 11 at the local coffeeshop open-mic. It was awesome.

Keep reading...Show less
Blue
Climate Tech

The Wackiest Climate Tech Bets of 2025

Because you never know what’s going to take off.

Science fiction.
Heatmap Illustration/Getty Images

Not even 12 months of unceasingly bleak climate news could keep climate tech founders and funders from getting involved in some seriously sci-fi sounding ideas. While the first half of the year may have been defined by a general retrenchment, the great thing about about early-stage venture capital is that it very much still allows for — nay, encourages — the consideration of technologies so far beyond the mainstream that their viability is almost entirely untethered from current political sentiment.

Below are seven of the most fantastical technologies investors took a bet on this year, with almost all announced in just the past quarter alone. In an undeniably rough year for the sector, perhaps VCs are now ready to let their imaginations — and pocketbooks — run just a little bit wilder.

Keep reading...Show less
Yellow