Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

What Carbon Dioxide Has to Do With the Meaning of Life

Rob talks to Peter Brannen, author of the new book The Story of CO2 Is the Story of Everything.

A wind turbine and air pollution.
Heatmap Illustration/Getty Images

How did life first form on Earth? What does entropy have to do with the origins of mammalian life — or the creation of the modern economy? And what chemical process do people, insects, Volkswagens, and coal power plants all share?

On this week’s episode of Shift Key, Rob chats with Peter Brannen, the author of a new history of the planet, The Story of CO2 Is the Story of Everything. The book weaves together a single narrative from the Big Bang to the Permian explosion to the oil-devouring economy of today by means of a single common thread: CO2, the same molecule now threatening our continued flourishing.

Brannen is a contributing writer at The Atlantic and the author of The Ends of the World, a history of mass extinctions on Earth. He is an affiliate at the Institute of Arctic and Alpine Research at the University of Colorado, Boulder. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Robinson Meyer: Why do we have a surplus of oxygen in the air in the first place? It was, for me, also something I did not understand at all before I read the book.

Peter Brannen: So there’s this common trope that two out of the next three breaths you have is from phytoplankton the ocean, or a quarter of it is from the Amazon alive today. And there’s a sense in which that’s true because oxygen and CO2 are being exchanged very quickly in the biosphere. But there is something like 800 times more oxygen in the air than can be produced by the entire biosphere. And all of the oxygen that’s produced by the rainforest, say — the rainforest is a living system where everything else is consuming that organic matter and feeding off of it. And it’s kind of a wash — just as much oxygen is created by the trees as is consumed by the bugs and fungi and jaguars and all the things that are living in the rainforest that are feeding off those plants and respiring that plant matter back to things like CO2 and water. So on a net scale it’s a wash.

So that gets you a planet with close to zero oxygen, and instead we have this absurd abundance of this thing that wants to react with everything. And the only way you can do that is if, say, you imagine a tree and when it dies, rather than being decomposed by fungi and beetles and on and on, that tree suddenly gets buried in sediment and falls into the crust and becomes part of the rock record, and the oxygen it made in life is not used in its own destruction. And by shielding that tree in the earth, you leave this surplus of oxygen in the air. And over all of Earth history, as a vanishingly small amount of this organic matter, things like plants and algae, do make it into the rock record, they leave an equivalent gift of oxygen in the air as a surplus.

We are more familiar with plant matter in the crust where it’s economically exploitable — we call those fossil fuels. So in a weird way, the fact that me and you can breathe — I don’t think a lot of people attribute that to the fact that there’s fossil fuels in the ground. Luckily most, you know, quote-unquote fossil fuels are very diffuse in mudstones, and they’re not economically exploitable. And we’re never going to run out of oxygen by burning fossil fuels because, you know, we worry about CO2 going up in parts per million and oxygens in whole percent. So, you know, it is true that for every molecule of CO2 we burn we’re bringing down oxygen by an equivalent amount, it’s just not that concerning.

But yeah, there is this astounding way of reframing, of looking at the world where the plant surface is breathable only because of what’s happened in the rocks beneath it.

Mentioned:

Peter’s book, The Story of CO2 Is the Story of Everything

Lost City Hydrothermal Field

ATP synthase in action

This episode of Shift Key is sponsored by …

Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.

Music for Shift Key is by Adam Kromelow.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Everyone Wants to Know PJM’s Data Center Plan

How will America’s largest grid deal with the influx of electricity demand? It has until the end of the year to figure things out.

Power lines and a data center.
Heatmap Illustration/Getty Images

As America’s largest electricity market was deliberating over how to reform the interconnection of data centers, its independent market monitor threw a regulatory grenade into the mix. Just before the Thanksgiving holiday, the monitor filed a complaint with federal regulators saying that PJM Interconnection, which spans from Washington, D.C. to Ohio, should simply stop connecting new large data centers that it doesn’t have the capacity to serve reliably.

The complaint is just the latest development in a months-long debate involving the electricity market, power producers, utilities, elected officials, environmental activists, and consumer advocates over how to connect the deluge data centers in PJM’s 13-state territory without further increasing consumer electricity prices.

Keep reading...Show less
Green
Energy

Exclusive: U.S. Startup Lands Deal to Develop International AI-for-Nuclear Rules

Atomic Canyon is set to announce the deal with the International Atomic Energy Agency.

An atom and AI.
Heatmap Illustration/Getty Images

Two years ago, Trey Lauderdale asked not what nuclear power could do for artificial intelligence, but what artificial intelligence could do for nuclear power.

The value of atomic power stations to provide the constant, zero-carbon electricity many data centers demand was well understood. What large language models could do to make building and operating reactors easier was less obvious. His startup, Atomic Canyon, made a first attempt at answering that by creating a program that could make the mountains of paper documents at the Diablo Canyon nuclear plant, California’s only remaining station, searchable. But Lauderdale was thinking bigger.

Keep reading...Show less
Blue
AM Briefing

Trump’s SMR Play

On black lung, blackouts, and Bill Gates’ reactor startup

Donald Trump and Chris Wright.
Heatmap Illustration/Getty Images

Current conditions: The Northeastern U.S. is bracing for 6 inches of snow, including potential showers in New York City today • A broad swath of the Mountain West, from Montana through Colorado down to New Mexico, is expecting up to six inches of snow • After routinely breaking temperature records for the past three years, Guyana shattered its December high with thermometers crossing 92 degrees Fahrenheit.

THE TOP FIVE

1. Energy Department shells out $800 million to two nuclear projects

The Department of Energy gave a combined $800 million to two projects to build what could be the United States’ first commercial small modular reactors. The first $400 million went to the federally owned Tennessee Valley Authority to finance construction of the country’s first BWRX-300. The project, which Heatmap’s Matthew Zeitlin called the TVA’s “big swing at small nuclear,” is meant to follow on the debut deployment of GE-Hitachi Nuclear Energy’s 300-megawatt SMR at the Darlington nuclear plant in Ontario. The second $400 million grant backed Holtec International’s plan to expand the Palisades nuclear plant in Michigan where it’s currently working to restart with the company’s own 300-megawatt reactor. The funding came from a pot of money earmarked for third-generation reactors, the type that hew closely to the large light water reactors that make up nearly all the U.S. fleet of 94 commercial nuclear reactors. While their similarities with existing plants offer some benefits, the Trump administration has also heavily invested in incentives to spur construction of fourth-generation reactors that use coolants other than water. “Advanced light-water SMRs will give our nation the reliable, round-the-clock power we need to fuel the President’s manufacturing boom, support data centers and AI growth, and reinforce a stronger, more secure electric grid,” Secretary of Energy Chris Wright said in a statement. “These awards ensure we can deploy these reactors as soon as possible.”

Keep reading...Show less
Blue