Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Politics

Carbon Capture May Not Have Been Spared After All

The House budget bill may have kept the 45Q tax credit, but nixing transferability makes it decidedly less useful.

The Capitol.
Heatmap Illustration/Getty Images, Climeworks

Very few of the Inflation Reduction Act’s tax credits made it through the House’s recently passed budget bill unscathed. One of the apparently lucky ones, however, was the 45Q credit for carbon capture projects. This provides up to $180 per metric ton for direct air capture and $85 for carbon captured from industrial or power facilities, depending on how the CO2 is subsequently sequestered or put to use in products such as low-carbon aviation fuels or building materials. The latest version of the bill doesn’t change that at all.

But while the preservation of 45Q is undoubtedly good news for the increasing number of projects in this space, carbon capture didn’t escape fully intact. One of the main ways the IRA supercharged tax credits was by making them transferable, turning them into an important financing tool for small or early-stage projects that might not make enough money to owe much — or even anything — in taxes. Being able to sell tax credits on the open market has often been the only way for smaller developers to take advantage of the credits. Now, the House bill will eliminate transferability for all projects that begin construction two years after the bill becomes law.

That’s going to make the economics of an already financially unsteady industry even more difficult. “Especially given the early stage of the direct air capture industry, transferability is really key,” Giana Amador, the executive director of an industry group called the Carbon Removal Alliance, told me. “Without transferability, most DAC companies won’t be able to fully capitalize upon 45Q — which, of course, threatens the viability of these projects.”

We’re not talking about just a few projects, either. We’re talking about the vast majority, Jessie Stolark, the executive director of another industry group, the Carbon Capture Coalition, told me. “The initial reaction is that this is really bad, and would actually cut off at the knees the utility of the 45Q tax credit,” Stolark said. Out of over 270 carbon capture projects announced as of today, Stolark estimates that fewer than 10 will be able to begin construction in the two years before transferability ends.

The alternative to easily transferable tax credits is a type of partnership between a project developer and a tax equity investor such as a bank. In this arrangement, investors give project developers cash in exchange for an equity stake in their project and their tax credit benefits. Deals like this are common in the renewable energy industry, but because they’re legally complicated and expensive, they’re not really viable for companies that aren’t bringing in a lot of revenue.

Because carbon capture is a much younger, and thus riskier technology than renewables, “tax equity markets typically require returns of 30% or greater from carbon capture and direct air capture project developers,” Stolark told me. That’s a much higher rate than tax equity partners typically require for wind or solar projects. “That out of the gate significantly diminishes the tax credit's value.” Taken together with inflation and high interest rates, all this means that “far fewer projects will proceed to construction,” Stolark said.

One DAC company I spoke with, Bay Area-based Noya, said that now that transferability is out, it has been exploring the possibility of forming tax equity partnerships. “We’ve definitely talked to banks that might be interested in getting involved in these kinds of things sooner than they would have otherwise gotten involved, due to the strategic nature of being partnered with companies that are growing fast,” Josh Santos, Noya’s CEO, told me.

It would certainly be a surprise to see banks — which are generally quite risk averse — lining up behind these kinds of new and unproven technologies, especially given that carbon capture doesn’t have much of a natural market. While CO2 can be used for some limited industrial purposes — beverage carbonation, sustainable fuels, low-carbon concrete — the only market for true carbon dioxide removal is the voluntary market, in which companies, governments, or individuals offset their own emissions by paying companies to remove carbon from the atmosphere. So if carbon capture is going to become a thriving, lucrative industry, it’s likely going to be heavily dependent on future government incentives, mandates, or purchasing commitments. And that doesn’t seem likely to happen in the U.S. anytime soon.

Noya, which is attempting to deploy its electrically-powered, modular direct air capture units beginning in 2027, is still planning on building domestically, though. As Santos told me, he’s eyeing California and Texas as promising sites for the company’s first projects. And while he said that the repeal of transferability will certainly “make things more complicated,” it is not enough of a setback for the company to look abroad.

“45Q is a big part of why we are focused on the U.S. mainly as our deployment site,” Santos explained. “We’ve looked at places like Iceland and the Middle East and Africa for potential deployment locations, and the tradeoff of losing 45Q in exchange for a cheaper something has to be significant enough for that to make sense,” he told me — something like more cost efficient electricity, permitting or installation costs. Preserving 45Q, he told me, means Noya’s long-term project economics are still “great for what we’re trying to build.”

But if companies can’t weather the short-term headwinds, they’ll never be able to reach the level of scale and profitability that would allow them to leverage the benefits of the 45Q credits directly. For many DAC companies such as Climeworks, which built the industry’s largest facility in Iceland, Amador and Stolark said that the domestic policy environment is causing hesitation around expanding in the U.S.

“We are very much at risk of losing our US leadership position in the industry,” Stolark told me. Meanwhile, she said that Canada, China, and the EU are developing policies that are making them increasingly attractive places to build.

As Amador put it, “I think no matter what these projects will be built, it’s just a question of whether the United States is the most favorable place for them to be deployed.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Donald Trump.
Heatmap Illustration/Getty Images

President Trump has had it in for electric vehicle charging since day one. His January 20 executive order “Unleashing American Energy” singled out the $5 billion National Electric Vehicle Infrastructure program by name, directing the Department of Transportation to pause and review the funding as part of his mission to “eliminate” the so-called “electric vehicle mandate.”

With the review now complete, the agency has concluded that canceling NEVI is not an option. In an ironic twist, the Federal Highway Administration issued new guidance for the program on Monday that not only preserves it, but also purports to “streamline applications,” “slash red tape,” and “ensure charging stations are actually built.”

Keep reading...Show less
Blue
Electric Vehicles

AM Briefing: The Energy Department’s Advanced Nuclear Dream

On Sierra Club drama, OBBB’s price hike, and deep-sea mining blowback

Energy Department Backs 11 Advanced Nuclear Projects
Heatmap Illustration/Getty Images

Current conditions: Tropical Erin is expected to gain strength and make landfall in the Caribbean as the first major hurricane of the season, lashing islands with winds of up to 80 miles per hour and 7 inches of rain • More than 152 fires have broken out across Greece in the past 24 hours alone as Europe battles a heatwave • Typhoon Podul is expected to make landfall over southeastern Taiwan on Wednesday morning, lashing the island with winds of up to 96 miles per hour.

THE TOP FIVE

1. Energy Department selects 11 nuclear projects for pilot program

The Department of Energy selected 11 nuclear projects from 10 reactor startups on Tuesday for a pilot program “with the goal to construct, operate, and achieve criticality of at least three test reactors” by next July 4. The Trump administration then plans to fast-track the successful technologies for commercial licensing. The effort is part of the United States’ attempt at catching up with China, which last year connected its first high-temperature gas-cooled reactor to the grid. The technologies in the program vary among the reactors selected for the program, with some reactors based on Generation IV designs using coolants other than water and others pitching smaller but otherwise traditional light water reactors. None of the selected models will produce more than 300 megawatts of power. The U.S. hopes these smaller machines can be mass produced to bring down the cost of nuclear construction and deploy atomic energy in more applications, including on remote military bases, and even, as NASA announced last week, the moon.

Keep reading...Show less
Yellow
Podcast

Shift Key Summer School: How Do Power Markets Work?

Jesse gives Rob a lesson in marginal generation, inframarginal rent, and electricity supply curves.

Power lines.
Heatmap Illustration/Getty Images

Most electricity used in America today is sold on a wholesale power market. These markets are one of the most important institutions structuring the modern U.S. energy economy, but they’re also not very well understood, even in climate nerd circles. And after all: How would you even run a market for something that’s used at the second it’s created — and moves at the speed of light?

On this week’s episode of Shift Key Summer School, Rob and Jesse talk about how electricity finds a price and how modern power markets work. Why run a power market in the first place? Who makes the most money in power markets? How do you encourage new power plants to get built? And what do power markets mean for renewables?

Keep reading...Show less
Yellow