You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The government agency is quietly funding some of the industry’s most exciting early stage companies.

When the George W. Bush administration established the Advanced Research Projects Agency - Energy, better known as ARPA-E, the number one goal for the new agency sounded an ambitious and patriotic note: “To enhance the economic and energy security of the United States through the development of energy technologies.” And from that uncontroversial foundation, a bipartisan bastion of cleantech innovation was born.
I knew I wanted to dig into the critical role that ARPA-E plays in the climate tech funding landscape after Rajesh Swaminathan, a partner at Khosla Ventures, told me that he views the agency as the “least talked about VC in town.” So I reached out to ARPA-E’s director, Evelyn Wang, to learn more.
Of course, ARPA-E isn’t actually a venture capital firm — it provides no-strings-attached funding to promising energy projects rather than aiming for a return on investment. “So a little bit different,” Wang told me. “Our mission is very much focused on energy independence, reducing greenhouse gas emissions, and enhancing energy efficiency.”
The Bush administration established ARPA-E in 2007 with the passage of the America COMPETES Act, which aimed to improve the technological competitiveness of the United States via investments in research and development. But the agency was funded for the first time in 2009, under Obama, as a part of an $800 billion stimulus package in response to the Great Recession. A substantial chunk of that funding — $90 billion — was allocated for clean energy, which the administration would go on to boast amounted to the “largest single investment in clean energy in history.”
Yet whether it’s been Bush or Obama — or Trump or Biden — in the White House, the messaging around ARPA-E has always trended less towards renewables and climate mitigation and more towards energy security and economic competitiveness. As the name suggests, ARPA-E is modeled after the Defense Advanced Research Projects Agency, or DARPA, which was established in 1958 in response to the Soviet’s launch of the Sputnik satellite. DARPA has since helped birth such little-known tech as the entire internet, GPS, automated voice recognition, and self-driving cars.
But while the de facto customer for DARPA-developed tech is always the Department of Defense, the pathway to commercialization for ARPA-E projects mainly relies on private sector interest. In that sense, the goal of ARPA-E is neatly aligned with that of venture capitalists: Get tech to market. Because while scientific learnings are all well and good, Wang said that “ultimately, we need to see these technologies commercialized — to actually be out there — to actually affect the ecosystem and change the energy landscape.”
Since ARPA-E can eschew the profit motive, it’s able to fund high-risk, high-reward projects at the earliest stages, when most investors would be reluctant to take on that level of uncertainty. Yet the inherent risk means the success rate for ARPA-E projects as measured by metrics such as the number of companies it’s spawned (157), exits via mergers, acquisitions or IPOs (30), and additional partnerships with other government agencies (360), can seem low compared to the 1,590 projects that the agency has funded over the past 15 years. A climate tech investor I spoke with on background told me that while they love ARPA-E and are glad it exists, they were expecting more success stories by now.
That’s at least partially because even after a project is funded and proof-of-concept has been demonstrated, there’s often still a ways to go before investors are ready to jump in. “I think when we first stood up ARPA-E, the idea was that at that point, it would be sufficiently de-risked for the private sector to then pick it up and invest,” Wang told me. But frequently, that hasn’t been the case. ARPA-E usually funds projects for one to three years, but often climate tech innovation relies on deeply complex and thus inherently slow advancements in science and engineering — think fusion energy, novel battery development, or direct air capture. Many venture funds have 10 year time horizons, so if investors don’t see a payoff happening in that timeframe, they’ll probably hold back.
The investor I spoke with on background told me that ARPA-E has become more effective in partnership with the Office of Clean Energy Demonstrations, established in 2021 under the Department of Energy, which uses its $25 billion budget to create model buildouts of new technology with private sector partners. Earlier this year, OCED selected six ARPA-E awardees focused on industrial decarbonization to receive a combined total of up to $775 million.
Even so, the investor told me, ARPA-E funding alone still might not be enough to get companies to a place where OCED would be interested. To help close that gap, ARPA-E started a program called SCALEUP, a mouthful of an acronym for The Seeding Critical Advances for Leading Energy (Technologies) with Untapped Potential, in 2019. It provides a small number of ARPA-E projects with follow-on funding to further prove out their concepts — provided they can identify at least one commercialization partner such as a potential customer, end-user, or supplier willing to take a stake in the development of the tech and help it get to market.
So far, Wang says the program has yielded some successes. The list includes LongPath Technologies, which monitors methane emissions and leaks in the oil and gas industry and received a conditional loan last year from the DOE’s Loan Programs Office; Natron Energy, which just opened the first commercial-scale sodium-ion battery production facility in the U.S.; and Sila, a battery materials manufacturer that has raised over $1.3 billion in total, and secured contracts with Mercedes-Benz and Panasonic.
When you look at ARPA-E’s success rate in terms of dollars in and dollars out, though, it starts to look pretty darn efficacious as is. Since 2009, ARPA-E has provided more than $3.8 billion for research and development, leading to over $12.6 billion in private-sector follow-on funding, while the 30 exits to date have yielded a combined market valuation of $22.2 billion. And since it often takes climate tech companies around a decade to mature to the point where they’re ready for an exit event, many of ARPA-E’s companies have yet to reach the acquisition or IPO threshold.
These days, ARPA-E projects are facing a completely different funding landscape than in the 2000s — one ripe with both excitement and cash as well as increasing competition. So while Wang told me that the agency’s goal is always to look for “technological whitespace” in the energy landscape, “it's getting more crowded,” she said. “And I think in that context, we've strategically decided that we should also think about broader vision type efforts.” To that end, ARPA-E has identified three comprehensive focus areas: developing clean primary energy sources such as geothermal, small modular nuclear reactors, fusion and geologic hydrogen; power delivery for non-electrical sources, such as energy transported via hydrogen or heat; and figuring out how to source carbon sustainably, such as via engineered plants and algae.
Now that ARPA-E has been supporting projects for a decade and a half, it’s getting more experimental when it comes to developing novel testbeds for its tech. Exhibit A is the San Antonio International Airport, which recently signed a memorandum of understanding with the agency to deploy a series of ARPA-E backed technologies.
Many major airports are actually higher tech than passengers may realize, and given the mounting pressure on the aviation industry to decarbonize, they’re also open to novel sustainability solutions. In San Antonio, the airport is deploying EV chargers from Imagen Energy and sodium-ion battery tech from Natron Energy, both of which could help electrify their ground vehicles, as well as a distributed energy management system from Autogrid, which allows airports to control their virtual power plants, microgrids, EV fleet, and demand response measures. Other tech, such as hybrid-electric planes from Ampaire, could be integrated into the airport in the future.
That’s a lot of technology development for not many headlines. And when a company raises a major round or goes public, sometimes you have to dig deep to discover their ARPA-E origins. Hence, the “least talked about VC in town” comment. In some sense, Wang says, this is intentional.
“When we think about success, if our teams, our companies are successful, and they shine, then we shine,” she told me, and maybe that’s the way it should continue to be. Because while advertising government investment in anything seen as “clean” or “green” can immediately draw both partisan praise and ire, funding for ARPA-E has been steadily creeping up nearly every year since 2015. And yes, that includes the Trump era, even though the former president seemingly wanted to axe the agency altogether. Congress, it turned out, was not on board with that plan.
“Our mission is about energy independence and bolstering our economy and I think everyone agrees with this mission,” Wang told me. “Everyone,” of course, will always be an overstatement. But perhaps Wang is right that the agency does function better as a behind-the-scenes player. As she put it, speaking of the companies the agency funds, “It’s more about them, right? And how that affects the ecosystem, and helps our nation in terms of what we need to do as a country, and how that sets an example for the world.”
Editor’s note: This story initially misstated the size of the American Recovery and Reinvestment Act and the amount of funding allocated to clean energy.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Forget data centers. Fire is going to make electricity much more expensive in the western United States.
A tsunami is coming for electricity rates in the western United States — and it’s not data centers.
Across the western U.S., states have begun to approve or require utilities to prepare their wildfire adaptation and insurance plans. These plans — which can require replacing equipment across thousands of miles of infrastructure — are increasingly seen as non-negotiable by regulators, investors, and utility executives in an era of rising fire risk.
But they are expensive. Even in states where utilities have not yet caused a wildfire, costs can run into the tens or hundreds of millions of dollars. Of course, the cost of sparking a fire can be much higher.
At least 10 Western states have recently approved or are beginning to work on new wildfire mitigation plans, according to data from E9 Insights, a utility research and consulting firm. Some utilities in the Midwest and Southeast have now begun to put together their own proposals, although they are mostly at an earlier phase of planning.
“Almost every state in the West has some kind of wildfire plan or effort under way,” Sam Kozel, a researcher at E9, told me. “Even a state like Missouri is kicking the tires in some way.”
The costs associated with these plans won’t hit utility customers for years. But they reflect one more building cost pressure in the electricity system, which has been stressed by aging equipment and rising demand. The U.S. Energy Information Administration already expects wholesale electricity prices to increase 8.5% in 2026.
The past year has seen a new spate of plans. In October, Colorado’s largest utility Xcel Energy proposed more than $845 million in new spending to prepare for wildfires. The Oregon utility Portland General Electric received state approval to spend $635 million on “compliance-related upgrades” to its distribution system earlier this month. That category includes wildfire mitigation costs.
The Public Utility Commission of Texas issued its first mandatory wildfire-mitigation rules last month, which will require utilities and co-ops in “high-risk” areas to prepare their own wildfire preparedness programs.
Ultimately, more than 140 utilities across 19 states have prepared or are working on wildfire preparedness plans, according to the Pacific Northwest National Laboratory.
It will take years for this increased utility spending on wildfire preparedness to show up in customers’ bills. That’s because utilities can begin spending money for a specific reason, such as disaster preparedness, as soon as state regulators approve their plan to do so. But utilities can’t begin passing those costs to customers until regulators review their next scheduled rate hike through a special process known as a rate case.
When they do get passed through, the plans will likely increase costs associated with the distribution system, the network of poles and wires that deliver electricity “the last mile” from substations to homes and businesses. Since 2019, rising distribution-related costs has driven the bulk of electricity price inflation in the United States. One risk is that distribution costs will keep rising at the same time that electricity itself — as well as natural gas — get more expensive, thanks to rising demand from data centers and economic growth.
California offers a cautionary tale — both about what happens when you don’t prepare for fire, and how high those costs can get. Since 2018, the state has spent tens of billions to pay for the aftermath of those blazes that utilities did start and remake its grid for a new era of fire. Yet it took years for those costs to pass through to customers.
“In California, we didn’t see rate increases until 2023, but the spending started in 2018,” Michael Wara, a senior scholar at the Woods Institute for the Environment and director of the Climate and Energy Policy Program at Stanford University, told me.
The cost of failing to prepare for wildfires can, of course, run much higher. Pacific Gas and Electric paid more than $13.5 billion to wildfire victims in California after its equipment was linked to several deadly fires in the state. (PG&E underwent bankruptcy proceedings after its equipment was found responsible for starting the 2018 Camp Fire, which killed 85 people and remains the deadliest and most destructive wildfire in state history.)
California now has the most expensive electricity in the continental United States.
Even the risk of being associated with starting a fire can cost hundreds of millions. In September, Xcel Energy paid a $645 million settlement over its role in the 2021 Marshall fire, even though it has not admitted to any responsibility or negligence in the fire.
Wara’s group began studying the most cost-effective wildfire investments a few years ago, when he realized the wave of cost increases that had hit California would soon arrive for other utilities.
It was partly “informed by the idea that other utility commissions are not going to allow what California has allowed,” Wara said. “It’s too expensive. There’s no way.”
Utilities can make just a few cost-effective improvements to their systems in order to stave off the worst wildfire risk, he said. They should install weather stations along their poles and wires to monitor actual wind conditions along their infrastructure’s path, he said. They should also install “fast trip” conductors that can shut off powerlines as soon as they break.
Finally, they should prepare — and practice — plans to shut off electricity during high-wind events, he said. These three improvements are relatively cheap and pay for themselves much faster than upgrades like undergrounding lines, which can take more than 20 years to pay off.
Of course, the cost of failing to prepare for wildfires is much higher than the cost of preparation. From 2019 to 2023, California allowed its three biggest investor-owned utilities to collect $27 billion in wildfire preparedness and insurance costs, according to a state legislative report. These costs now make up as much as 13% of the bill for customers of PG&E, the state’s largest utility.
State regulators in California are currently considering the utility PG&E’s wildfire plan for 2026 to 2028, which calls for undergrounding 1,077 miles of power lines and expanding vegetation management programs. Costs from that program might not show up in bills until next decade.
“On the regulatory side, I don’t think a lot of these rate increases have hit yet,” Kozel said.
California may wind up having an easier time adapting to wildfires than other Western states. About half of the 80 million people who live in the west live in California, according to the Census Bureau, meaning that the state simply has more people who can help share the burden of adaptation costs. An outsize majority of the state’s residents live in cities — which is another asset, since wildfire adaptation usually involves getting urban customers to pay for costs concentrated in rural areas.
Western states where a smaller portion of residents live in cities, such as Idaho, might have a harder time investing in wildfire adaptation than California did, Wara said.
“The costs are very high, and they’re not baked in,” Wara said. “I would expect electricity cost inflation in the West to be driven by this broadly, and that’s just life. Climate change is expensive.”
The administration has already lost once in court wielding the same argument against Revolution Wind.
The Trump administration says it has halted all construction on offshore wind projects, citing “national security concerns.”
Interior Secretary Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!”
There are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. Burgum confirmed to Fox Business that these were the five projects whose leases have been targeted for termination, and that notices were being sent to the project developers today to halt work.
“The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told the network’s Maria Bartiromo.
David Schoetz, a spokesperson for Empire Wind's developer Equinor, told me the company is “aware of the stop work order announced by the Department of Interior,” and that the company is “evaluating the order and seeking further information from the federal government.” Schoetz added that we should ”expect more to come” from the company.
This action takes a kernel of truth — that offshore wind can cause interference with radar communication — and blows it up well beyond its apparent implications. Interior has cited reports from the military they claim are classified, so we can’t say what fresh findings forced defense officials to undermine many years of work to ensure that offshore wind development does not impede security or the readiness of U.S. armed forces.
The Trump administration has already lost once in court with a national security argument, when it tried to halt work on Revolution Wind citing these same concerns. The government’s case fell apart after project developer Orsted presented clear evidence that the government had already considered radar issues and found no reason to oppose the project. The timing here is also eyebrow-raising, as the Army Corps of Engineers — a subagency within the military — approved continued construction on Vineyard Wind just three days ago.
It’s also important to remember where this anti-offshore wind strategy came from. In January, I broke news that a coalition of activists fighting against offshore wind had submitted a blueprint to Trump officials laying out potential ways to stop projects, including those already under construction. Among these was a plan to cancel leases by citing national security concerns.
In a press release, the American Clean Power Association took the Trump administration to task for “taking more electricity off the grid while telling thousands of American workers to leave the job site.”
“The Trump Administration’s decision to stop construction of five major energy projects demonstrates that they either don’t understand the affordability crises facing millions of Americans or simply don't care,” the group said. “On the first day of this Administration, the President announced an energy emergency. Over the last year, they worked to create one with electricity prices rising faster under President Trump than any President in recent history."
What comes next will be legal, political and highly dramatic. In the immediate term, it’s likely that after the previous Revolution victory, companies will take the Trump administration to court seeking preliminary injunctions as soon as complaints can be drawn up. Democrats in Congress are almost certainly going to take this action into permitting reform talks, too, after squabbling over offshore wind nearly derailed a House bill revising the National Environmental Policy Act last week.
Heatmap has reached out to all of the offshore wind developers affected, and we’ll update this story if and when we hear back from them.
Editor’s note: This story has been updated to reflect comment from Equinor and ACP.
On Redwood Materials’ milestone, states welcome geothermal, and Indian nuclear
Current conditions: Powerful winds of up to 50 miles per hour are putting the Front Range states from Wyoming to Colorado at high risk of wildfire • Temperatures are set to feel like 101 degrees Fahrenheit in Santa Fe in northern Argentina • Benin is bracing for flood flooding as thunderstorms deluge the West African nation.

New York Governor Kathy Hochul inked a partnership agreement with Ontario Premier Doug Ford on Friday to work together on establishing supply chains and best practices for deploying next-generation nuclear technology. Unlike many other states whose formal pronouncements about nuclear power are limited to as-yet-unbuilt small modular reactors, the document promised to establish “a framework for collaboration on the development of advanced nuclear technologies, including large-scale nuclear” and SMRs. Ontario’s government-owned utility just broke ground on what could be the continent’s first SMR, a 300-megawatt reactor with a traditional, water-cooled design at the Darlington nuclear plant. New York, meanwhile, has vowed to build at least 1 gigawatt of new nuclear power in the state through its government-owned New York Power Authority. Heatmap’s Matthew Zeitlin wrote about the similarities between the two state-controlled utilities back when New York announced its plans. “This first-of-its-kind agreement represents a bold step forward in our relationship and New York’s pursuit of a clean energy future,” Hochul said in a press release. “By partnering with Ontario Power Generation and its extensive nuclear experience, New York is positioning itself at the forefront of advanced nuclear technology deployment, ensuring we have safe, reliable, affordable, and carbon-free energy that will help power the jobs of tomorrow.”
Hochul is on something of a roll. She also repealed a rule that’s been on the books for nearly 140 years that provided free hookups to the gas system for new customers in the state. The so-called 100-foot-rule is a reference to how much pipe the state would subsidize. The out-of-pocket cost for builders to link to the local gas network will likely be thousands of dollars, putting the alternative of using electric heat and cooking appliances on a level playing field. “It’s simply unfair, especially when so many people are struggling right now, to expect existing utility ratepayers to foot the bill for a gas hookup at a brand new house that is not their own,” Hochul said in a statement. “I have made affordability a top priority and doing away with this 40-year-old subsidy that has outlived its purpose will help with that.”
Redwood Materials, the battery recycling startup led by Tesla cofounder J.B. Straubel, has entered into commercial production at its South Carolina facility. The first phase of the $3.5 billion plant “has brought a system online that’s capable of recovering 20,000 metric tons of critical minerals annually, which isn’t full capacity,” Sawyer Merritt, a Tesla investor, posted on X. “Redwood’s goal is to keep these resources here; recovered, refined, and redeployed for America’s advantage,” the company wrote in a blog post on its website. “This strategy turns yesterday’s imports into tomorrow’s strategic stockpile, making the U.S. stronger, more competitive, and less vulnerable to supply chains controlled by China and other foreign adversaries.”
A 13-state alliance at the National Association of State Energy Officials launched a new accelerator program Friday that’s meant to “rapidly expand geothermal power development.” The effort, led by state energy offices in Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia, “will work to establish statewide geothermal power goals and to advance policies and programs that reduce project costs, address regulatory barriers, and speed the deployment of reliable, firm, flexible power to the grid.” Statements from governors of red and blue states highlighted the energy source’s bipartisan appeal. California Governor Gavin Newsom, a Democrat, called geothermal a key tool to “confront the climate crisis.” Idaho’s GOP Governor Brad Little, meanwhile, said geothermal power “strengthens communities, supports economic growth, and keeps our grid resilient.” If you want to review why geothermal is making a comeback, read this piece by Matthew.
Sign up to receive Heatmap AM in your inbox every morning:
Yet another pipeline is getting the greenlight. Last week, the Federal Energy Regulatory Commission approved plans for Mountain Valley’s Southgate pipeline, clearing the way for construction. The move to shorten the pipeline’s length from 75 miles down to 31 miles, while increasing the diameter of the project to 30 inches from between 16 and 23 inches, hinged on whether FERC deemed the gas conduit necessary. On Thursday, E&E News reported, FERC said the developers had demonstrated a need for the pipeline stretching from the existing Mountain Valley pipeline into North Carolina.
Last week, I told you about a bill proposed in India’s parliament to reform the country’s civil liability law and open the nuclear industry to foreign companies. In the 2010s, India passed a law designed to avoid another disaster like the 1984 Bhopal chemical leak that killed thousands but largely gave the subsidiary of the Dow Chemical Corporation that was responsible for the accident a pass on payouts to victims. As a result, virtually no foreign nuclear companies wanted to operate in India, lest an accident result in astronomical legal expenses in the country. (The one exception was Russia’s state-owned Rosatom.) In a bid to attract Western reactor companies, Indian lawmakers in both houses of parliament voted to repeal the liability provisions, NucNet reported.
The critically endangered Lesser Antillean iguana has made a stunning recovery on the tiny, uninhabited islet of Prickly Pear East near Anguilla. A population of roughly 10 breeding-aged lizards ballooned to 500 in the past five years. “Prickly Pear East has become a beacon of hope for these gorgeous lizards — and proves that when we give native wildlife the chance, they know what to do,” Jenny Daltry, Caribbean Alliance Director of nature charities Fauna & Flora and Re:wild, told Euronews.