You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The government agency is quietly funding some of the industry’s most exciting early stage companies.

When the George W. Bush administration established the Advanced Research Projects Agency - Energy, better known as ARPA-E, the number one goal for the new agency sounded an ambitious and patriotic note: “To enhance the economic and energy security of the United States through the development of energy technologies.” And from that uncontroversial foundation, a bipartisan bastion of cleantech innovation was born.
I knew I wanted to dig into the critical role that ARPA-E plays in the climate tech funding landscape after Rajesh Swaminathan, a partner at Khosla Ventures, told me that he views the agency as the “least talked about VC in town.” So I reached out to ARPA-E’s director, Evelyn Wang, to learn more.
Of course, ARPA-E isn’t actually a venture capital firm — it provides no-strings-attached funding to promising energy projects rather than aiming for a return on investment. “So a little bit different,” Wang told me. “Our mission is very much focused on energy independence, reducing greenhouse gas emissions, and enhancing energy efficiency.”
The Bush administration established ARPA-E in 2007 with the passage of the America COMPETES Act, which aimed to improve the technological competitiveness of the United States via investments in research and development. But the agency was funded for the first time in 2009, under Obama, as a part of an $800 billion stimulus package in response to the Great Recession. A substantial chunk of that funding — $90 billion — was allocated for clean energy, which the administration would go on to boast amounted to the “largest single investment in clean energy in history.”
Yet whether it’s been Bush or Obama — or Trump or Biden — in the White House, the messaging around ARPA-E has always trended less towards renewables and climate mitigation and more towards energy security and economic competitiveness. As the name suggests, ARPA-E is modeled after the Defense Advanced Research Projects Agency, or DARPA, which was established in 1958 in response to the Soviet’s launch of the Sputnik satellite. DARPA has since helped birth such little-known tech as the entire internet, GPS, automated voice recognition, and self-driving cars.
But while the de facto customer for DARPA-developed tech is always the Department of Defense, the pathway to commercialization for ARPA-E projects mainly relies on private sector interest. In that sense, the goal of ARPA-E is neatly aligned with that of venture capitalists: Get tech to market. Because while scientific learnings are all well and good, Wang said that “ultimately, we need to see these technologies commercialized — to actually be out there — to actually affect the ecosystem and change the energy landscape.”
Since ARPA-E can eschew the profit motive, it’s able to fund high-risk, high-reward projects at the earliest stages, when most investors would be reluctant to take on that level of uncertainty. Yet the inherent risk means the success rate for ARPA-E projects as measured by metrics such as the number of companies it’s spawned (157), exits via mergers, acquisitions or IPOs (30), and additional partnerships with other government agencies (360), can seem low compared to the 1,590 projects that the agency has funded over the past 15 years. A climate tech investor I spoke with on background told me that while they love ARPA-E and are glad it exists, they were expecting more success stories by now.
That’s at least partially because even after a project is funded and proof-of-concept has been demonstrated, there’s often still a ways to go before investors are ready to jump in. “I think when we first stood up ARPA-E, the idea was that at that point, it would be sufficiently de-risked for the private sector to then pick it up and invest,” Wang told me. But frequently, that hasn’t been the case. ARPA-E usually funds projects for one to three years, but often climate tech innovation relies on deeply complex and thus inherently slow advancements in science and engineering — think fusion energy, novel battery development, or direct air capture. Many venture funds have 10 year time horizons, so if investors don’t see a payoff happening in that timeframe, they’ll probably hold back.
The investor I spoke with on background told me that ARPA-E has become more effective in partnership with the Office of Clean Energy Demonstrations, established in 2021 under the Department of Energy, which uses its $25 billion budget to create model buildouts of new technology with private sector partners. Earlier this year, OCED selected six ARPA-E awardees focused on industrial decarbonization to receive a combined total of up to $775 million.
Even so, the investor told me, ARPA-E funding alone still might not be enough to get companies to a place where OCED would be interested. To help close that gap, ARPA-E started a program called SCALEUP, a mouthful of an acronym for The Seeding Critical Advances for Leading Energy (Technologies) with Untapped Potential, in 2019. It provides a small number of ARPA-E projects with follow-on funding to further prove out their concepts — provided they can identify at least one commercialization partner such as a potential customer, end-user, or supplier willing to take a stake in the development of the tech and help it get to market.
So far, Wang says the program has yielded some successes. The list includes LongPath Technologies, which monitors methane emissions and leaks in the oil and gas industry and received a conditional loan last year from the DOE’s Loan Programs Office; Natron Energy, which just opened the first commercial-scale sodium-ion battery production facility in the U.S.; and Sila, a battery materials manufacturer that has raised over $1.3 billion in total, and secured contracts with Mercedes-Benz and Panasonic.
When you look at ARPA-E’s success rate in terms of dollars in and dollars out, though, it starts to look pretty darn efficacious as is. Since 2009, ARPA-E has provided more than $3.8 billion for research and development, leading to over $12.6 billion in private-sector follow-on funding, while the 30 exits to date have yielded a combined market valuation of $22.2 billion. And since it often takes climate tech companies around a decade to mature to the point where they’re ready for an exit event, many of ARPA-E’s companies have yet to reach the acquisition or IPO threshold.
These days, ARPA-E projects are facing a completely different funding landscape than in the 2000s — one ripe with both excitement and cash as well as increasing competition. So while Wang told me that the agency’s goal is always to look for “technological whitespace” in the energy landscape, “it's getting more crowded,” she said. “And I think in that context, we've strategically decided that we should also think about broader vision type efforts.” To that end, ARPA-E has identified three comprehensive focus areas: developing clean primary energy sources such as geothermal, small modular nuclear reactors, fusion and geologic hydrogen; power delivery for non-electrical sources, such as energy transported via hydrogen or heat; and figuring out how to source carbon sustainably, such as via engineered plants and algae.
Now that ARPA-E has been supporting projects for a decade and a half, it’s getting more experimental when it comes to developing novel testbeds for its tech. Exhibit A is the San Antonio International Airport, which recently signed a memorandum of understanding with the agency to deploy a series of ARPA-E backed technologies.
Many major airports are actually higher tech than passengers may realize, and given the mounting pressure on the aviation industry to decarbonize, they’re also open to novel sustainability solutions. In San Antonio, the airport is deploying EV chargers from Imagen Energy and sodium-ion battery tech from Natron Energy, both of which could help electrify their ground vehicles, as well as a distributed energy management system from Autogrid, which allows airports to control their virtual power plants, microgrids, EV fleet, and demand response measures. Other tech, such as hybrid-electric planes from Ampaire, could be integrated into the airport in the future.
That’s a lot of technology development for not many headlines. And when a company raises a major round or goes public, sometimes you have to dig deep to discover their ARPA-E origins. Hence, the “least talked about VC in town” comment. In some sense, Wang says, this is intentional.
“When we think about success, if our teams, our companies are successful, and they shine, then we shine,” she told me, and maybe that’s the way it should continue to be. Because while advertising government investment in anything seen as “clean” or “green” can immediately draw both partisan praise and ire, funding for ARPA-E has been steadily creeping up nearly every year since 2015. And yes, that includes the Trump era, even though the former president seemingly wanted to axe the agency altogether. Congress, it turned out, was not on board with that plan.
“Our mission is about energy independence and bolstering our economy and I think everyone agrees with this mission,” Wang told me. “Everyone,” of course, will always be an overstatement. But perhaps Wang is right that the agency does function better as a behind-the-scenes player. As she put it, speaking of the companies the agency funds, “It’s more about them, right? And how that affects the ecosystem, and helps our nation in terms of what we need to do as a country, and how that sets an example for the world.”
Editor’s note: This story initially misstated the size of the American Recovery and Reinvestment Act and the amount of funding allocated to clean energy.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
There has been no new nuclear construction in the U.S. since Vogtle, but the workers are still plenty busy.
The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.
This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.
“We had challenges as we were building a new supply chain for a new technology and then workforce,” John Williams, an executive at Southern Nuclear Operating Company, which owns over 45% of Plant Vogtle, said in a webinar hosted by the environmental group Resources for the Future in October.
“It had been 30 years since we had built a new nuclear plant from scratch in the United States. Our workforce didn’t have that muscle memory that they have in other parts of the world, where they have been building on a more regular frequency.”
That workforce “hasn’t been building nuclear plants” since heavy construction stopped at Vogtle in 2023, he noted — but they have been busy “building data centers and car manufacturing in Georgia.”
Williams said that it would take another “six to 10” AP1000 projects for costs to come down far enough to make nuclear construction routine. “If we were currently building the next AP1000s, we would be farther down that road,” he said. “But we’ve stopped again.”
J.R. Richardson, business manager and financial secretary of the International Brotherhood of Electric Workers Local 1579, based in Augusta, Georgia, told me his union “had 2,000 electricians on that job,” referring to Vogtle. “So now we have a skill set with electricians that did that project. If you wait 20 or 30 years, that skill set is not going to be there anymore.”
Richardson pointed to the potential revitalization of the failed V.C. Summer nuclear project in South Carolina, saying that his union had already been reached out to about it starting up again. Until then, he said, he had 350 electricians working on a Meta data center project between Augusta and Atlanta.
“They’re all basically the same,” he told me of the data center projects. “They’re like cookie cutter homes, but it’s on a bigger scale.”
To be clear, though the segue from nuclear construction to data center construction may hold back the nuclear industry, it has been great for workers, especially unionized electrical and construction workers.
“If an IBEW electrician says they're going hungry, something’s wrong with them,” Richardson said.
Meta’s Northwest Louisiana data center project will require 700 or 800 electricians sitewide, Richardson told me. He estimated that of the IBEW’s 875,000 members, about a tenth were working on data centers, and about 30% of his local were on a single data center job.
When I asked him whether that workforce could be reassembled for future nuclear plants, he said that the “majority” of the workforce likes working on nuclear projects, even if they’re currently doing data center work. “A lot of IBEW electricians look at the longevity of the job,” Richardson told me — and nuclear plants famously take a long, long time to build.
America isn’t building any new nuclear power plants right now (though it will soon if Rick Perry gets his way), but the question of how to balance a workforce between energy construction and data center projects is a pressing one across the country.
It’s not just nuclear developers that have to think about data centers when it comes to recruiting workers — it’s renewables developers, as well.
“We don’t see people leaving the workforce,” said Adam Sokolski, director of regulatory and economic affairs at EDF Renewables North America. “We do see some competition.”
He pointed specifically to Ohio, where he said, “You have a strong concentration of solar happening at the same time as a strong concentration of data center work and manufacturing expansion. There’s something in the water there.”
Sokolski told me that for EDF’s renewable projects, in order to secure workers, he and the company have to “communicate real early where we know we’re going to do a project and start talking to labor in those areas. We’re trying to give them a market signal as a way to say, We’re going to be here in two years.”
Solar and data center projects have lots of overlapping personnel needs, Sokolski said. There are operating engineers “working excavators and bulldozers and graders” or pounding posts into place. And then, of course, there are electricians, who Sokolski said were “a big, big piece of the puzzle — everything from picking up the solar panel off from the pallet to installing it on the racking system, wiring it together to the substations, the inverters to the communication systems, ultimately up to the high voltage step-up transformers and onto the grid.”
On the other hand, explained Kevin Pranis, marketing manager of the Great Lakes regional organizing committee of the Laborers’ International Union of North America, a data center is like a “fancy, very nice warehouse.” This means that when a data center project starts up, “you basically have pretty much all building trades” working on it. “You’ve got site and civil work, and you’re doing a big concrete foundation, and then you’re erecting iron and putting a building around it.”
Data centers also have more mechanical systems than the average building, “so you have more electricians and more plumbers and pipefitters” on site, as well.
Individual projects may face competition for workers, but Pranis framed the larger issue differently: Renewable energy projects are often built to support data centers. “If we get a data center, that means we probably also get a wind or solar project, and batteries,” he said.
While the data center boom is putting upward pressure on labor demand, Pranis told me that in some parts of the country, like the Upper Midwest, it’s helping to compensate for a slump in commercial real estate, which is one of the bread and butter industries for his construction union.
Data centers, Pranis said, aren’t the best projects for his members to work on. They really like doing manufacturing work. But, he added, it’s “a nice large load and it’s a nice big building, and there’s some number of good jobs.”
A conversation with Dustin Mulvaney of San Jose State University
This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.
Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?
A couple things are going on. Monterey Bay is surrounded by Monterey County and Santa Cruz County and both are considering ordinances around battery storage. That’s different than a ban – important. You can have an ordinance that helps facilitate storage. Some people here are very focused on climate change issues and the grid, because here in Santa Cruz County we’re at a terminal point where there really is no renewable energy, so we have to have battery storage. And like, in Santa Cruz County the ordinance would be for unincorporated areas – I’m not sure how materially that would impact things. There’s one storage project in Watsonville near Moss Landing, and the ordinance wouldn’t even impact that. Even in Monterey County, the idea is to issue a moratorium and again, that’s in unincorporated areas, too.
It’s important to say how important battery storage is going to be for the coastal areas. That’s where you see the opposition, but all of our renewables are trapped in southern California and we have a bottleneck that moves power up and down the state. If California doesn’t get offshore wind or wind from Wyoming into the northern part of the state, we’re relying on batteries to get that part of the grid decarbonized.
In the areas of California where batteries are being opposed, who is supporting them and fighting against the protests? I mean, aside from the developers and an occasional climate activist.
The state has been strongly supporting the industry. Lawmakers in the state have been really behind energy storage and keeping things headed in that direction of more deployment. Other than that, I think you’re right to point out there’s not local advocates saying, “We need more battery storage.” It tends to come from Sacramento. I’m not sure you’d see local folks in energy siting usually, but I think it’s also because we are still actually deploying battery storage in some areas of the state. If we were having even more trouble, maybe we’d have more advocacy for development in response.
Has the Moss Landing incident impacted renewable energy development in California? I’ve seen some references to fears about that incident crop up in fights over solar in Imperial County, for example, which I know has been coveted for development.
Everywhere there’s batteries, people are pointing at Moss Landing and asking how people will deal with fires. I don’t know how powerful the arguments are in California, but I see it in almost every single renewable project that has a battery.
Okay, then what do you think the next phase of this is? Are we just going to be trapped in a battery fire fear cycle, or do you think this backlash will evolve?
We’re starting to see it play out here with the state opt-in process where developers can seek state approval to build without local approval. As this situation after Moss Landing has played out, more battery developers have wound up in the opt-in process. So what we’ll see is more battery developers try to get permission from the state as opposed to local officials.
There are some trade-offs with that. But there are benefits in having more resources to help make the decisions. The state will have more expertise in emergency response, for example, whereas every local jurisdiction has to educate themselves. But no matter what I think they’ll be pursuing the opt-in process – there’s nothing local governments can really do to stop them with that.
Part of what we’re seeing though is, you have to have a community benefit agreement in place for the project to advance under the California Environmental Quality Act. The state has been pretty strict about that, and that’s the one thing local folks could still do – influence whether a developer can get a community benefits agreement with representatives on the ground. That’s the one strategy local folks who want to push back on a battery could use, block those agreements. Other than that, I think some counties here in California may not have much resistance. They need the revenue and see these as economic opportunities.
I can’t help but hear optimism in your tone of voice here. It seems like in spite of the disaster, development is still moving forward. Do you think California is doing a better or worse job than other states at deploying battery storage and handling the trade offs?
Oh, better. I think the opt-in process looks like a nice balance between taking local authority away over things and the better decision-making that can be brought in. The state creating that program is one way to help encourage renewables and avoid a backlash, honestly, while staying on track with its decarbonization goals.
The week’s most important fights around renewable energy.
1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.
2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.
3. Cheboygan County, Michigan – A group of landowners is waging a new legal challenge against Michigan’s permitting primacy law, which gives renewables developers a shot at circumventing local restrictions.
4. Klamath County, Oregon – It’s not all bad news today, as this rural Oregon county blessed a very large solar project with permits.
5. Muscatine County, Iowa – To quote DJ Khaled, another one: This county is also advancing a solar farm, eliding a handful of upset neighbors.