Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

How I Learned to Stop Worrying and Love Unmanned, Aerial Flamethrowers

They look like a weapon. They work like a weapon. But they could save countless lives.

A firefighting drone.
Heatmap Illustration/Getty Images

I confess that when I first heard about flamethrowing drones, I did not think they sounded like a good idea.

Being an American sometimes means learning that flamethrowers can get marked down for Black Friday (25% off! Bitcoin accepted!) and that a device that shoots literal fire is “not considered a firearm” in the United States. These discoveries did not leave me with the best first impression; drones struck me as untrustworthy enough before I learned they were being rigged to ignite things.

But for all that they sounds like they belong in a supervillain’s arsenal, fire-starting drones could also save countless lives. That’s because unmanned vehicles — especially ones that fly — just might be the next frontier in wildland firefighting.

“It’s still pretty new technology and there’s a long way to go before it’s being used everywhere,” Carrick Detweiler, the CEO and co-founder of Drone Amplified, stressed to me. He and his team of computer science and engineering professors and alums from the University of Nebraska-Lincoln are focused on supplying major fire agencies with devices that can be used to safely conduct backburns and prescribed burns. They already have “hundreds” of such drones out in the field, with clients including the U.S. Forest Service and the Bureau of Land Management, as well as comparable fire agencies in Canada, Australia, and New Zealand.

Rather than mount a whole flamethrower to a drone, the Drone Amplified device works by dropping small potassium permanganate shells that had been injected with anti-freeze, causing the shells to ignite, over a landscape. (The shells are known as “dragon eggs.”) This allows fire agencies to conduct controlled low-intensity burns in hard-to-reach locations to limit the available fuel for future wildfires. It also allows firefighters to start what are known as backburns, defensive “counter-fires” of last resort that block an advancing wildfire from moving into a new landscape, and that are traditionally started by hand with dip torches.

IGNIS 2.0 Introductionyoutu.be

Most important of all, though, Drone Amplified’s invention keeps the skies above wildfires in the domain of unmanned aircraft. Already this month in Australia, where wildfire season is just beginning, a fire-mapping plane crashed, killing all three people on board, including a 22-year-old New Yorker. In the U.S. this summer, a helicopter collision in California killed an additional three who’d been attending to a grass fire. By the CDC’s measure, about a quarter of all firefighting deaths are aviation-related; according to High Country News, 37 firefighters died in aerial accidents between 2005 and 2015, meaning “more than 200 ground firefighters would die every year” if earthbound casualty rates were the same.

“A bushfire creates its own weather system, right?” Adrian Hollis of the Perth-based digital technology company Remsense, which is developing an aerial ignition system to rival Drone Amplified’s in Australia, explained to me. The heat from a wildfire creates an updraft, which in addition to natural weather conditions, can result in “a lot of wind shear,” Hollis went on. “And because you are fighting a fire, you’re so low [in a plane or helicopter] that you’ve got no recovery altitude. So if you go into a stall or something happens, you’ve got no height to get out of trouble. That’s why it’s so dangerous.”

With wildfires being so unpredictable and deadly, you’d think there would have already been more advances in firefighting drones and robotics. But what makes fires so complicated for humans to fight also makes them difficult for the equipment. “The environment of fighting fires is probably one of the most challenging environments for any technology,” Carlos Viegas, a mechanical engineer at Portugal’s University of Coimbra and the head of the school’s Field Tech Lab, told me.

Viegas’ specialty when it comes to drone payload isn’t fire; it’s water. In Portugal, where backburning is less common, he’s helped to invent a drone that will drag a fire hose to douse hard-to-reach or dangerous fires, the design of which required overcoming the same obstacles of high heat, low visibility, ashy air, and unpredictable weather conditions that a fire-dropping drone might encounter. “This is why we are still fighting fires the way we used to fight for the last 50 or 100 years, almost,” he said of the tough conditions engineers have to overcome in drone design. “The progress, in this case, it’s very slow.”

Beyond safety concerns, there are, of course, financial and logistical considerations compelling the advancements, too. Wildfires aren’t always cooperative, for one thing; they often start in areas where it’s hard — or expensive — to shuttle people to the site. In Hollis’ line of work, in Australia, responding to a wildfire might require transporting fuel, a helicopter, and staff hundreds of miles into remote or roadless terrain, all of which makes a drone that weighs only about as much as a small golden retriever when fully loaded far more appealing.

A drone is also cheaper. One of Drone Amplified’s Alta X’s, outfitted with the Ignis fire-starting system, runs around $80,000, which might sound expensive if you’re an, um, home flame-throwing enthusiast, but for a fire agency, “the alternative is a helicopter that costs $10,000 to $20,000 a day to operate,” Detweiler said. “And then the added risk of the people who are up in helicopters.” The price tag has the further benefit of deterring pyromaniacs; though anyone can technically buy one of Drone Amplified’s products, which the FAA has carved out a dangerous weapon exemption for, Detweiler reassuringly pointed out that “few people have $80,000 just to spend” and “we do have pretty in-depth discussions, and we do trainings, with users.”

Besides, the people the drone really needs to win over are the firefighters, who are understandably distrustful of newfangled gadgets that could quit on them in a life-or-death situation. But according to Detweiler, they are coming around: “It’s been really exciting to see just how the fire community has started to embrace these new technologies because historically, they’re putting their lives on the line and they trust their shovel and their chainsaw,” he said. “New technology really needs to work to get them to start adopting it.”

It might also, one day, make them obsolete. Already, drones are being used for fire surveillance and mapping, and Viegas, the Portuguese mechanical engineer, showed me videos of other autonomous systems the Field Tech Lab is pioneering, including a mini bulldozer that can dig a fireline and drones equipped with remote sensors that can tell when a landscape is becoming overgrown, and thus more fire-prone, long before people on the ground can.

On the one hand, it’s incredible to be on the cusp of this moment, where a technology shift could save hundreds of firefighters’ lives by taking them out of difficult, dangerous landscapes in the decades to come. On the other — and as the existence of an online flamethrower retailer perhaps implies — these are powerful tools in the wrong hands, too. Armchair drone enthusiasts have already scuttled wildfire suppression efforts by flying cameras over burns, grounding official aerial fire missions in the process, not to mention that some 89% of wildfires are started by people. I don’t have an enormous amount of trust that someone, somewhere, won’t do something dumb with an expensive toy.

But the upsides certainly outweigh any edge cases my overactive imagination can dream up. Viegas, for one, sees only upsides: “I firmly believe that we are working towards a solution where we won’t need any firefighters in the terrain — we will just fight fires with unmanned means,” he said.

And while the “dangerous weapon” parallel is never too far away from something like a fire-starting drone, he suggested the embrace of the technology requires a simple reframe of the enemy. “In the war, you are seeing already everything is done by drones,” Viegas said. “I believe that in the war against fires, it’s going to be the same as well.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Politics

The Climate Election You Missed Last Night

While you were watching Florida and Wisconsin, voters in Naperville, Illinois were showing up to fight coal.

Climate voting.
Heatmap Illustration/Getty Images

It’s probably fair to say that not that many people paid close attention to last night’s city council election in Naperville, Illinois. A far western suburb of Chicago, the city is known for its good schools, small-town charm, and lovely brick-paved path along the DuPage River. Its residents tend to vote for Democrats. It’s not what you would consider a national bellwether.

Instead, much of the nation’s attention on Tuesday night focused on the outcomes of races in Wisconsin and Florida — considered the first electoral tests of President Donald Trump and Elon Musk’s popularity. Outside of the 80,000 or so voters who cast ballots in Naperville, there weren’t likely many outsiders watching the suburb’s returns.

Keep reading...Show less
Green
Energy

Exclusive: Trump’s Plans to Build AI Data Centers on Federal Land

The Department of Energy has put together a list of sites and is requesting proposals from developers, Heatmap has learned.

A data center and Nevada land.
Heatmap Illustration/Getty Images

The Department of Energy is moving ahead with plans to allow companies to build AI data centers and new power plants on federal land — and it has put together a list of more than a dozen sites nationwide that could receive the industrial-scale facilities, according to an internal memo obtained by Heatmap News.

The memo lists sites in Texas, Illinois, New Jersey, Colorado, and other locations. The government could even allow new power plants — including nuclear reactors and carbon-capture operations — to be built on the same sites to generate enough electricity to power the data centers, the memo says.

Keep reading...Show less
Economy

AM Briefing: Liberation Day

On trade turbulence, special election results, and HHS cuts

Trump’s ‘Liberation Day’ Tariffs Loom
Heatmap Illustration/Getty Images

Current conditions: A rare wildfire alert has been issued for London this week due to strong winds and unseasonably high temperatures • Schools are closed on the Greek islands of Mykonos and Paros after a storm caused intense flooding • Nearly 50 million people in the central U.S. are at risk of tornadoes, hail, and historic levels of rain today as a severe weather system barrels across the country.

THE TOP FIVE

1. Trump to roll out broad new tariffs

President Trump today will outline sweeping new tariffs on foreign imports during a “Liberation Day” speech in the White House Rose Garden scheduled for 4 p.m. EST. Details on the levies remain scarce. Trump has floated the idea that they will be “reciprocal” against countries that impose fees on U.S. goods, though the predominant rumor is that he could impose an across-the-board 20% tariff. The tariffs will be in addition to those already announced on Chinese goods, steel and aluminum, energy imports from Canada, and a 25% fee on imported vehicles, the latter of which comes into effect Thursday. “The tariffs are expected to disrupt the global trade in clean technologies, from electric cars to the materials used to build wind turbines,” explained Josh Gabbatiss at Carbon Brief. “And as clean technology becomes more expensive to manufacture in the U.S., other nations – particularly China – are likely to step up to fill in any gaps.” The trade turbulence will also disrupt the U.S. natural gas market, with domestic supply expected to tighten, and utility prices to rise. This could “accelerate the uptake of coal instead of gas, and result in a swell in U.S. power emissions that could accelerate climate change,” Reutersreported.

Keep reading...Show less
Yellow