Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

A Sublime Solution to Climate’s Hardest Problem

A Massachusetts-based startup has figured out how to produce zero-carbon cement.

A cement mixer with flowers.
Heatmap Illustration/Getty Images

Over the past several months, in the sleepy city of Holyoke, Massachusetts, bulldozers have been tearing down a former paper mill. The newly leveled ground on the western banks of the Connecticut River is on its way to becoming the home of a big, industrial bet. If it pays off, what was once known as the Paper City could soon become the Clean Cement Capital — of the country, at least. Sublime Systems, a startup that has developed a process for producing the ubiquitous building material without releasing any carbon emissions, has chosen the site for its first commercial factory.

“It’s poetic justice,” Sublime’s CEO and co-founder, Leah Ellis, told me. “We’re excited about bringing clean technology to this community which has been damaged by a legacy of pollution from the old industry that used to happen there.”

The word cement is often used interchangeably with concrete, but it’s actually a key ingredient in the stuff that gets mixed and poured and hardened into sidewalks, roads, buildings. It is the glue that binds together sand, water, and gravel to form the fabric of our built environment. It’s also a major source of carbon emissions — 8% of the global total. And these aren’t like other kinds of emissions.

Scientists often split the climate problem into two categories. There’s the carbon that we know how to eliminate, like from power generation, home heating, and cars. And then there’s a group called the “hard to decarbonize” stuff — mostly emissions from industrial activities where clean solutions are still in early stages and not cost competitive. Cement is the poster child.

That’s because more than half of the emissions from cement come from a chemical reaction that’s intrinsic to its production. Cement consists of lime, silica, and water. It’s made by first heating up limestone in a kiln to more than 1,400 degrees Celsius (2,550 degrees Fahrenheit) — a level of heat that can typically be achieved only by burning coal or natural gas — to produce reactive lime. The bigger problem, though, is that limestone contains carbon, and as it heats up, that carbon is released as a gas. So even if you could heat the kiln with clean electricity instead of coal, there would still be carbon emitted by the process.

But Sublime has found another way. Ellis and her cofounder Yet-Ming Chiang — a serial entrepreneur who is also behind the buzzy battery startup Form Energy — developed a new way to make reactive lime that does not require limestone. Instead of heating up rocks in a kiln, they drive the chemical process with electric currents. This enables the company to avoid limestone and use a variety of other raw materials that do not contain carbon to produce lime.

When Ellis described her breakthrough to me, it sounded incredibly simple, like it might be obvious to anyone with a background in electrochemistry. “Why didn’t anyone else think of this?” I wanted to know.

“I believe this way of making cement is going to be obvious in retrospect, in a post-carbon world where you don’t use fossil fuels, where you’re penalized for CO2 emissions,” she told me. But she said there were three factors that led to this innovation in this moment.

First, we’ve reached a tipping point in figuring out how to decarbonize the electric grid. “That is the one key enabler. Once you’ve got a clean grid, that’s the tool to decarbonizing everything else.”

Second, Ellis happened to be in the right place at the right time. She started her career as a battery scientist and founded Sublime while completing a postdoc at the Massachusetts Institute of Technology. The interdisciplinary nature of the school, where she could collaborate with other departments, enabled her to expand the bounds of what she could do with her expertise.

And third, the technology Sublime uses to drive its chemical process — a device called an electrolyzer — has become much cheaper. Though electrolyzers have been around for a long time, they’ve recently benefited from increased economies of scale as interest in using them for applications like clean hydrogen production has grown.

For the past year, Sublime has been honing its process at a small pilot plant in Somerville, Massachusetts, a suburb of Boston. The new plant in Holyoke is designed to be many times larger — producing up to 30,000 tons of cement per year — though still smaller than the million tons per year that an average cement plant produces. The site is about half a mile down the river from a hydroelectric dam — a key consideration for the company, since it needs to power the plant with clean electricity.

The project is not yet fully financed, but Sublime has received $1 million in tax credits from the state of Massachusetts and is holding out hope for a federal grant from the Department of Energy’s Office of Clean Energy Demonstrations.

There are a number of other emerging methods to reduce emissions from cement, including alternative chemical combinations and installing carbon capture equipment on cement plants, but it’s far from being removed from the “hard to decarbonize” club. The question, as always, is whether Sublime and others will be able to produce a high-quality product — one that passes the strength and durability tests required for the construction industry — at scale, and at a competitive price.

Sublime’s product is certainly more expensive than conventional cement today. But its solution is cheaper than using carbon capture, Ellis said. Capturing the carbon from a cement plant generally requires a big increase in energy use. And while the technology has been under development for decades, it’s so far failed to be applied economically outside the natural gas processing industry. In a world where builders are required to use lower-carbon materials, or where there’s a price on carbon, Ellis thinks Sublime will have an advantage. Governments at various levels in the U.S. have already started to implement “buy clean” programs that require the use of lower-carbon cement for state and federal construction projects, so Sublime may have an edge in some markets once its Holyoke plant is up and running.

“Our process is true zero,” she said. “It just doesn’t emit.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Politics

Trump Opened a Back Door to Kill Wind and Solar Tax Credits

The Senate told renewables developers they’d have a year to start construction and still claim a tax break. Then came an executive order.

Trump burning a calendar.
Heatmap Illustration/Getty Images

Renewable energy advocates breathed a sigh of relief after a last-minute change to the One Big Beautiful Bill Act stipulated that wind and solar projects would be eligible for tax credits as long as they began construction within the next 12 months.

But the new law left an opening for the Trump administration to cut that window short, and now Trump is moving to do just that. The president signed an executive order on Monday directing the Treasury Department to issue new guidance for the clean electricity tax credits “restricting the use of broad safe harbors unless a substantial portion of a subject facility has been built.”

Keep reading...Show less
Sparks

Trump Says He’s Going to Slap a Huge Tariff on Copper

“I believe the tariff on copper — we’re going to make it 50%.”

Donald Trump.
Heatmap Illustration/Getty Images

President Trump announced Tuesday during a cabinet meeting that he plans to impose a hefty tax on U.S. copper imports.

“I believe the tariff on copper — we’re going to make it 50%,” he told reporters.

Keep reading...Show less
Green
Climate

The Only Weather Models That Nailed the Texas Floods Are on Trump’s Chopping Block

Predicting the location and severity of thunderstorms is at the cutting edge of weather science. Now funding for that science is at risk.

Texas flooding.
Heatmap Illustration/Getty Images

Tropical Storm Barry was, by all measures, a boring storm. “Blink and you missed it,” as a piece in Yale Climate Connections put it after Barry formed, then dissipated over 24 hours in late June, having never sustained wind speeds higher than 45 miles per hour. The tropical storm’s main impact, it seemed at the time, was “heavy rains of three to six inches, which likely caused minor flooding” in Tampico, Mexico, where it made landfall.

But a few days later, U.S. meteorologists started to get concerned. The remnants of Barry had swirled northward, pooling wet Gulf air over southern and central Texas and elevating the atmospheric moisture to reach or exceed record levels for July. “Like a waterlogged sponge perched precariously overhead, all the atmosphere needed was a catalyst to wring out the extreme levels of water vapor,” meteorologist Mike Lowry wrote.

Keep reading...Show less
Blue